
Introduction
	 Sphingolipids are a very important and large family of interrelated 
lipid molecules at the forefront of the newly emerging field of lipidom-
ics [1]. Since the discovery that Diacylglycerol (DAG), a lipid derived 
from membrane components via the action of phospholipase C, acts 
as a so-called secondary messenger to activate protein kinase C and 
the liberation of arachidonic acid by phospholipase A2 as a precursor 
for eicosanoid production [2,3], the idea that lipids were just for ener-
gy storage or passive membrane components was redundant. It is now 
widely accepted that many lipids, especially sphingolipids, are vital in 
signaling and regulating very important cellular processes including 
cell growth, apoptosis, inflammation and migration [1]. However,  
unlike the relatively simple and linear signaling pathway of the  
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ubiquitous secondary messenger cyclic adenosine mono phosphate, 
there are significant additional layers of complexity that must be 
considered with sphingolipids. For simplicity in this review the term 
sphingolipid is used for all of the molecules illustrated in figure 1 (ex-
cluding the de novo starting molecules utilized by the transferase and 
the degradation products produced by the lyase) regardless of whether 
they have been found to have signaling functions. As mentioned these 
are a large family of interrelated signaling molecules (Figure 1), some 
of which can exhibit opposite effects on the same cellular process such 
as apoptosis. Being interrelated means disruption of one part of the 
pathway can produce a “ripple effect,” affecting the levels of several of 
these molecules in turn [1]. Physically, some sphingolipids are very 
hydrophobic so limiting them to a particular organelle membrane, of-
ten where synthesized, or even a specific membrane face. Other sphin-
golipids are more hydrophilic and can enter the cytoplasm. There can 
also be differences in the alkyl chain lengths, position and number 
of double bonds and additional chemical groups (typically hydrox-
yl). There are currently 6 known isoforms of the enzyme Ceramide 
Synthase (CerS; also known as sphingosine N-acyltransferase) which 
is central in sphingolipid metabolism (Figure 1) and these iso forms 
exhibit preferences for acyl CoA’s of different chain lengths (16 vs.18 
vs.24 carbons) [4,5]. Sphingolipids are also converted into so-called 
“complex” sphingolipids by the addition of various “head groups” 
(such as phosphocholine, glucose or galactose) to become more am-
phipathic membrane components. In addition ceramide is used in the 
important group of membrane components known as gangliosides 
which are sialylated glycol sphingolipids found in cell membranes 
generally but in particular in the grey matter of the CNS [6,7]. Com-
plex sphingolipids have been implicated in such important functions 
as endocytosis and receptor clustering and the formation of functional 
microdomains or so-called “lipid rafts” in cell membranes. Addition-
ally gangliosides are involved in brain development and thought to be 
involved in synaptic transmission and the modifications implicated 
in such vital processes as learning and memory [8]. The sphingolipid 
ceramide itself can be a membrane component and is found in high-
er than normal levels in these microdomains involved in certain sig-
naling pathways both in plasma and mitochondrial membranes [9]. 
Complex sphingolipids are themselves recycled and can add to and 
affect the pool of simpler sphingolipids (Figure 1). Virtually all the 
published data on sphingolipid function was obtained from research 
utilizing laboratory animals or cultured cells. A brain sphingolipid 
(“sphingosin”) was actually first described in the 19th century [10] but 
it was not until 1947 that the collective term sphingolipid was applied 
[11] and by 1983 many individual sphingolipids had been described 
[12]. Sphingolipids are defined by a sphingoid base backbone (1,3-di-
hydroxy, 2-aminoalkane) typified by sphingosine (Figure 2). Sphin-
gosine is specifically D-erythro-1,3-dihydroxy, 2-aminooctadec-4-ene 
(also known as trans-4-sphingenine). Sphingolipids can vary in chain 
length, position and number of double bonds and other function-
al groups such as a hydroxyl group at position 4. Most mammalian 
sphingolipids studied so far contain an 18 carbon alkyl chain and 
therefore the following discussion focuses on these variants but the 
obvious potential for a vast super family of these molecules varying in  
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Abstract
	 This brief review is designed to acquaint the reader with a basic 
understanding of the functions of sphingolipids in the newly emerg-
ing field of lipidomics. This includes the derived so-called complex 
sphingolipids found in membranes. Sphingolipids have been im-
plicated as important messenger molecules in many areas of cell 
function including cell growth, apoptosis, inflammation and migra-
tion. Complex sphingolipids have been shown to be involved in vital 
membrane functions such as receptor clustering and vesicle traffick-
ing. Obviously these functions are significant factors in the progres-
sion of many disease states such as the development of cancerous 
cells and tumorigenesis. Accordingly these lipid messengers and 
membrane components have attracted much pharmaceutical inter-
est and useful drugs are now starting to be approved and prescribed 
for patients in the U.S. This review introduces sphingolipid metab-
olism and function and briefly discusses their exploitation for drug 
development.
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chain length, etc. should not be overlooked. For an extremely de-
tailed and comprehensive review of the structure of sphingolipids 
the reader is recommended to access the Merrill laboratory web site  
[13; www.sphingomap.org].

Sphingolipid Metabolism

	 A detailed review of sphingolipid metabolism is beyond the scope 
of this review but is covered in-depth in the book “Sphingolipids as 
Signaling and Regulatory Molecules” [14]. To summarize, de novo 
sphingolipid synthesis starts with the condensation of the amino acid 
serine with palmitoyl-CoA to form 3-keto-dihydrosphingosine (also 
known as 3-ketosphinganine) catalyzed by serine palmitoyl transfer-
ase in the endoplasmic reticulum [15] (Figure 1). It has been shown 
in yeast and mouse fibroblast LM cells that a serine influx can drive 
de novo synthesis [16,17]. An abnormal subunit in this enzyme is re-
sponsible for hereditary sensory Neuropathy Type 1 which was the 
first human genetic disease associated with sphingolipid metabolism 
[18,19]. The 3-keto-dihydrosphingosine is then reduced to form di-
hydrosphingosin (also known as sphinganine) by an NADPH-depen-
dent reductase [20]. This is followed by addition of an acyl chain of 
variable length by amide formation via the action of CerS [4,21]. This 
reaction can be reversed by one of several ceramidases which exhibit 
organelle-specific expression and, like the sphingomyelinases, vari-
ous pH optimums (acid, neutral and alkaline) [22,23]. The resulting 
molecule is known as dihydroceramide and is normally modified by 
the addition of a double bond in the 4-5 position by dihydroceramide 
desaturase [24] to form ceramide (Figure 2). Ceramide can be consid-
ered a common central point or “hub” in sphingolipid metabolism [1] 
(Figure 1). It was thought initially that dihydroceramide might have 
specific biological activity but research, especially concerning the ac-
tivation of protein phosphatase 2A (PP2A), has shown that ceramide 
itself has far more activity for all targets discovered so far [25]. Cera-
mide can then be phosphorylated via ceramide kinase after transpor-
tation to the golgi apparatus [26] to form ceramide-1-phosphate and 
this reaction can also be reversed by ceramide-1-phosphate phospha-
tase [27]. Ceramide in particular has important messenger functions 
that will be discussed later. Ceramide is also the main entry point 
to complex sphingolipid generation which occurs principally in the 
golgi apparatus. However, ceramide is very hydrophobic and needs 
to be transported to the golgi apparatus either via vesicular transport 
or by binding to the Ceramide Transfer Protein [28] (CERT: figure 
3). Once in the Golgi various head groups such as glucose, galactose 
or phosphocholine can be added to the C1 position via the action of 
glucosylceramide synthase, ceramide galactosyltransferase or sphin-
gomyelin synthase respectively [29,30]. These complex sphingolipids 
can be recycled via various hydrolases to release ceramide back into 
the sphingolipid pool [31,32]. Sphingomyelin is broken down first to 
ceramide via the action of one of several sphingomyelinases, each with 
a different optimum pH and location on the plasma membrane (out-
er vs. inner faces) [33] and then to sphingosine via ceramidase. Al-
though both ceramide and sphingosine can “flip flop” across the plas-
ma membrane (neutral lipids unlike the phosphate derivatives which 
cannot “flip flop:” figure 3) their hydrophobicity means they can only 
be recycled back into the cell by endocytosis. After internalization 
and fusing with lysosomes, sphingomyelinases and ceramidases again 
participate in the breakdown and recycling of complex sphingolip-
ids [1,34]. One can therefore see that there are 2 entry points into 
these interconnected pathways: de novo synthesis and the recycling 
of complex sphingolipids (Figure 1). Ceramide can be converted di-
rectly to sphingosine by several ceramidases and in the reverse direc-
tion by CerS (sphingosine to ceramide) similarly to the dihydrode-
rivatives. Sphingosine itself can also be phosphorylated, via either of 
2 Sphingosine Kinases [35] (SphK1 and 2: reversed by sphingosine  
phosphate phosphatase) [36] to produce Sphingosine-1-Phosphate  

Figure 1: Summary of the metabolic pathways of the most important sphin-
golipids showing their interrelationships. De novo sphingolipid synthesis starts 
with serine and palmitoyl CoA while the recycling of “complex” sphingolipids 
will also affect the levels of these compounds. The two most currently re-
searched intermediates, ceramide and Sphingosine-1-Phosphate (S-1-P), are 
highlighted with their principal and often antagonistic actions; the so-called 
sphingolipid “rheostat” can be visualized as the metabolic linking of “complex” 
sphingolipids (far left) to S-1-P (far right) via ceramide and sphingosine. Single 
arrows denote an irreversible step while dual arrows indicate a reversible step; 
C-1-P is ceramide-1-phosphate.

Figure 2: Cartoons comparing the structures of the most important sphingo-
lipids plus the drug fingolimod and its active phosphorylated metabolite fingo-
limod phosphate.



Citation: Nicholas JD Wright (2016) A Beginners Guide to the Metabolism, Functions and Pharmacological Potential of Sphingolipids. J Pharmacol Res Ther 1: 001.

• Page 3 of 8 •

J Pharmacol Res Ther
ISSN: HPRT, Open Access Journal

Volume 1 • Issue 1 • 100001

(S-1-P: Figure 2). Sphingosine-1-phosphate, like ceramide, is an im-
portant messenger molecule whose functions will be discussed later 
[37]. It is also the so-called “exit point” from sphingolipid metabolism 
as the action of sphingosine-1-phosphate lyase irreversibly breaks it 
down into ethanolamine phosphate and hexadecenal [38,39] (Figure 
1). Significantly, S-1-P is released from cells to act extracellularly in 
an auto- and paracrine fashion via interaction with G-Protein Cou-
pled Receptors (GPCR’s) [40,41]. Activation of these GPCRs increases 
several pro-cancer functions including growth, survival, motility, an-
giogenesis, lymphangiogenesis and metastasis [42]. It is thought that 
S-1-P can exit a cell either via the specific transporter Spns2 or one 
of the ATP-Binding Cassette Transporters (ABCs) [43-45]; it’s more 
amphipathic nature (alkyl chain plus phosphate group), makes this 
possible. This is known as “inside-out” signaling (Figure 3). It is also 
found in serum at levels significantly higher than intracellularly (high 
vs. low nanomolar respectively) where it is associated with lipopro-
teins and albumen [46]. Sphingosine-1-phosphate can even enter cells 
via the cystic fibrosis transmembrane regulator (Figure 3) [47]. Due 
to the interconnected nature of sphingolipid metabolism, changes in 
the level of one or more family members can affect the levels of many 
other family members. The application of high-performance liquid 
chromatography-tandem mass spectrometry has revealed the cellular 
levels of many sphingolipids [48] suggesting, in effect, a concentration 
gradient from sphingomyelins (high levels in membranes) to S-1-P 
(low nanomolar concentrations) via ceramide and sphingosine. The 
level of each family member decreases by roughly an order of mag-
nitude from the previous one [46]. Thus it can be appreciated that 
small changes in ceramide levels may cause significant changes in 
S-1-P levels [1]. This has given rise to the concept of a sphingolipid 
“rheostat” affecting, in particular, the crucially important cell process  

of apoptosis; an increase in ceramide with a decrease in S-1-P favoring 
apoptotic pathways (a “left shift” in figure 1) whereas a decrease in 
ceramide with an increase in S-1-P favoring anti-apoptotic pathways 
(a “right shift” in figure 1) [49].

Sphingolipid Function: Ceramide
	 Although many sphingolipids appear to have various and import-
ant messenger functions, we will limit our principal discussion here-
to those best characterized so far and potentially the most important 
member’s ceramide and S-1-P especially as they relate to apoptosis. 
Apoptosis, also known as programmed cell death, is a normal cellu-
lar process whereby old, unnecessary or unhealthy cells can be safely 
eliminated. It is of particular importance in controlling and prevent-
ing the development of cancer cells and tumorigenesis. To briefly 
summarize, apoptosis can be stimulated via 2 general pathways; the 
extrinsic and intrinsic pathways. As their names suggest, the extrinsic 
results from external ligands binding to so-called “death receptors” 
(FasL or TNF-α) while the intrinsic is triggered either by nuclear or 
mitochondrial dysfunction. Regardless of the route the final result is 
the activation of various caspases and apoptosis. It is thought that ce-
ramide, released from sphingomyelin in lysosomes by the action of 
acid sphingomyelinase [1,34], can form channels in the outer mito-
chondrial membrane. This allows the release of pro-apoptotic pro-
teins such as cytochrome c, procaspases, apoptosis inducing factor, 
heat shock proteins, Smac/Diablo and endonuclease G which are cru-
cial for apoptosis [50]. Acid sphingomyelinase release of ceramide is 
stimulated by TNFα, CD95 and certain chemotherapeutic agents [51]. 
Ceramide activates cathepsin D to induce apoptosis via activating BID 
[34]. Ceramide’s other principal targets include PP1 and PP2A which 
are involved in regulating apoptosis and cell growth arrest [52,53]. 
Ceramide also targets the kinase suppressor Ras which helps regu-
late TNFα-mediated activation of ERK1 and 2 in intestinal epithelial 
cells [54,55], activation of c-Raf and the Mitogen-Activated Protein 
Kinase (MAPK) pathway in kidney glomerular mesangial cells [56], 
and many members of the PKC family [57-59]. Ceramide can bind to 
and activate Stress-Activated Protein Kinase (SAPK/JNK) and cause 
kidney glomerular epithelial cells to undergo apoptosis distinct from 
the previously mentioned effect in mesangial cells via MAPK [60]. Ce-
ramide is also implicated in metabolic syndrome and the development 
of type 2 diabetes. Excess saturated fatty acid levels and inflammato-
ry cytokines such as TNF-α cause an increase in ceramide which, via 
PP2A, activates PKB/Akt and lowers insulin sensitivity [61]. Finally it 
has been shown that both ceramide and S-1-P can cause autophagy. 
Autophagy is the cellular recycling of organelles and macromolecules 
principally for energy homeostasis; it is also implicated in certain im-
mune responses, stress, neurodegeneration, aging and cancer [62]. 
Normally AKT inhibits autophagy via mTOR kinase; if growth condi-
tions become unfavorable this inhibition is removed [63,64]. Tamox-
ifen, which can induce autophagy, is known to act via sphingolipids 
[65,66]. C2-ceramide, a synthetic Ser/Thr protein phosphatase acti-
vator, can cause autophagy via beclin-1 upregulation in MCF-1 cells 
similarly to tamoxifen [66]. Sphingosine-1-phosphate appears to acti-
vate autophagy by inhibiting mTOR but independently of AKT [67].

Sphingosine-1-Phosphate
	 Sphingosine-1-phosphate is typically found at very low concentra-
tions within cells, but higher in plasma, and is thought to act prin-
cipally via extracellular GPCR’s [44]. Sphingosine-1-phosphate has 
been shown to be essential for immune cell migration from lymphoid  

Figure 3: Movement of some of the most important sphingolipids within 
the cell. “Complex” sphingolipids such as sphingomyelin have limited aque-
ous solubility, requiring vesicular transport within a cell, and can rarely flip-
flop across a membrane due to the amphipathic nature. They are capable 
of lateral movement however. Recycling of sphingomyelin via the action of 
Sphingomyelinase (SM) and subsequently Ceramidase (CD) yields ceramide 
and then sphingosine respectively; ceramide and especially sphingosine can 
flip-flop across a membrane but still have limited aqueous solubility, ceramide 
requiring either vesicular transport or specific transfer proteins to move within 
the cell (CERT). Sphingosine Kinase (SK) can phosphorylate sphingosine to 
sphingosine-1-phosphate which can enter the cytosol but cannot cross mem-
branes; it is thought that either an ABC transporter (ABCC1) or the specif-
ic transporter Spns2 will allow it to exit the cell (allowing it to interact with 
its G-protein receptors) while the Cystic Fibrosis Transmembrane Regulator 
(CFTR) is implicated in its entry. Other abbreviations; LP, Lipid Phospha-
tases; SPP, Sphingophosphate Phosphatase; SMS, Sphingomyelin Synthase. 
Adapted from Hannun and Obeid [1].
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tissue to the site of disease so this gradient and dependency on cell 
surface GPR’s (specifically S1PR1) might be expected [68,69]. In plas-
ma it is associated primarily with high-density lipoproteins and is 
thought to contribute in some way to the protective effects of these 
lipoproteins [70]. It is also found in high levels in platelets where it is 
released rapidly upon platelet activation [71]. The 5 currently known 
S-1-P GPCR’s (S1PR1-5) display differential tissue expression and link 
to typical heterotrimeric G-protein pathways including Gi, Gq and G12 
[72-74]. The S1PR1 receptor is central in lymphocyte tracking [75]. 
Circulating S-1-P acting via GPCR’s is also significant in regulating 
vascular permeability during inflammation [76]. It is also probably 
necessary for activation of STAT3 which is a transcription factor 
known to be involved in several forms of cancer and metastasis. Inter-
estingly, STAT3 acts to upregulate S1PR1 expression producing in ef-
fect a positive feedback loop [77,78]. The S1PR1 receptor also activates 
MAPK [79] and in knockout mice deletion of S1PR1 is embryonic 
lethal as it is required for angiogenesis (deletion of S1PR2 or 3 is not) 
[80]. The receptors S1PR4 and 5 are also implicated in immune cell 
movement [81,82]. Sphingosine-1-phosphate is also thought to have 
intracellular targets but these are not as well characterized currently. 
One such intracellular target are the Histone Deacetylases (HDAC’s); 
S-1-P increases histone acetylation via inhibition of HDACs which is 
tumoriogenic [83,84]. Recent research has implicated S-1-P in am-
yloid-β-peptide processing in neurons suggesting it may affect the 
progression of alzheimer’s disease [85]. Unlike ceramide, S-1-P in-
hibits apoptosis and promotes cell proliferation and can therefore be 
tumorigenic; there has been much research recently into sphingosine 
kinase inhibitors [86,87]. Sphingosine kinase is affected by many fac-
tors including growth factors (PDGF, IGF and VEGF) and cytokines 
(TNF-α and IL-1) [1,88]. Not surprisingly there is much interest in 
reducing S-1-P levels and it has been additionally implicated in en-
dothelial barrier homeostasis and viral infections [87]. Sphingolipids, 
especially ceramide, are also thought to be involved in many aspects of 
inflammation. This includes the activation of the transcription factor 
NF-χB which affects many genes including those encoding cytokines 
and chemokines [89,90]. Recently it has been shown that ceramide 
may be involved in lung inflammation in cystic fibrosis [91]. When 
large amounts of ceramide are generated they can actually change the 
biophysical properties of a membrane [92]. The reader is recommend-
ed to the excellent review by Meer et al. [93]. Research has shown 
S-1-P is also involved in mast cell function. Binding to the IgE re-
ceptor activates sphingosine kinase, (principally type 2), and therefore 
generation of S-1-P [94].

Complex Sphingolipids
	 Gangliosides although technically complex sphingolipids are such 
a large subject in their own right that a discussion of their many im-
portant functions is beyond the scope of this review and the reader is 
referred to one of the many excellent reviews such as that by Schnaar 
[95]. The other complex sphingolipids can be divided into 3 broad 
groups depending on whether glucose, galactose or phosphocholine 
head groups are initially added to the C1 position of ceramide re-
sulting in the formation of glucosphingolipids, galactosphingolipids 
(collectively known as glycosphingolipids) and sphingomyelin respec-
tively. These are produced primarily in the golgi apparatus and can 
exhibit great diversity. Three major enzymes are responsible for syn-
thesis of these complex sphingolipids and include glucosylceramide 
synthase, ceramide galactosyltransferase and sphingomyelin synthase 
respectively [14]. Glucosylceramide is produced in the golgi apparatus 
from ceramide and UDP-glucose by glucosylceramide synthase [96].  

Glucosylceramide is transported via the lipid transport protein FAPP2 
[97]. Unlike galactosylceramide, glucosylceramide is essential to life 
in mammals; mice lacking this synthase are embryonic lethal but the 
condition can be rescued by addition of exogenous glucosylceramide. 
It is thought that these sphingolipids are essential for correct cell-cell 
recognition [98]. Mouse knockouts of glucosylceramide synthase 
confined to the skin or nervous system lead to either a breakdown 
of the hydrophobic barrier of the skin (excessive water loss followed 
by death) or death 11-24 days after birth, apparently due to a lack of 
proper brain development respectively [99,100]. Galactosylceramide 
is produced by ceramide galactosyltransferase from ceramide and 
UDP-galactose in the endoplasmic reticulum [101]. Although this 
enzyme appears to have limited tissue expression (kidneys, testes and 
intestines) it is found in myelinating glial cells both in the CNS and 
peripheral nervous system (oligodendrocytes and schwann cells re-
spectively). In the CNS, myelin has a significant galactosylceramide 
content and knockout mice for ceramide galactosyltransferase display 
severe motor weakness among other problems such as male infertili-
ty [102,103]. Sphingomyelin is the commonest complex sphingolipid 
found in mammalian cells and is essential for survival [14,104]. There 
are 3 sphingomyelin synthases found primarily in the golgi apparatus 
but also in the cell membrane where they may be involved in main-
taining sphingolipid content [30,105]. The synthesis of sphingomyelin 
from ceramide and phosphatidylcholine also produces DAG which 
has opposite effects to ceramide on proliferation and cell survival 
[106]. Vitamin D3 stimulates sphingomyelinase activity and results in 
an increase in ceramide levels due to sphingomyelin breakdown [107]. 
Apart from the generation of signaling molecules, complex sphingo-
lipids are necessary for maintaining membrane structure and certain 
functional microdomains [108,109]. They are also binding sites for 
various proteins as well as certain bacterial and viral pathogens and 
toxins [110,111]. Some sphingolipids are actually covalently attached 
to membrane proteins [112]. Importantly it has been shown that de-
pletion of complex sphingolipids from plasma membranes due to fu-
monisin-mediated disruption of sphingolipid metabolism (a fungal 
toxin that inhibits CerS) affects endocytosis of folate via human folate 
receptor α. Folate is required for correct development of the CNS and 
a deficiency in animals and humans causes an increase in Neural Tube 
Defects, (NTD’s). Fumonisins have been shown to cause this in an-
imal models and are strongly implicated in increased incidences of 
NTD’s in humans where fumonisin-contaminated foods have been 
consumed [113].

Pharmacological Targeting
	 Sphingolipids are involved or implicated in many vital cell process-
es and pathologies. The simple rheostat model suggests that a shift in 
the intracellular sphingolipid profile towards ceramide versus S-1-P 
will favor apoptosis (Figure 1) and therefore the possible removal of 
cancer cells. Inhibition of SphKs should decrease the generation of 
S-1-P and were therefore an obvious early target of research but even 
though decreases in S-1-P were often seen, sometimes with a corre-
sponding increase in ceramide, the results were mixed [114-118]. The 
specific SphK2 inhibitor ABC294640 did inhibit several cancerous 
cell types in culture and decrease S-1-P levels in mice but also has 
demonstrated anti-estrogenic effects [118,119]. Neutralizing of S-1-P 
via monoclonal antibodies looked promising with murine models 
showing a decrease in lung cancer metastasis but a human version 
has just recently failed a phase III trial for the treatment of renal 
cancer (Sonepcizumab) [120,121]; http://adisinsight.springer.com/
drugs/800024045). However this drug is still being considered for the  

http://adisinsight.springer.com/drugs/800024045
http://adisinsight.springer.com/drugs/800024045
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treatment of wet age-related macular degeneration such as the preva-
lence of sphingolipid signaling. Research is also underway to develop 
drugs that activate S-1-P lyase as a means to decrease S-1-P [122]. Sig-
nificant features of many cancers are their resistance to death receptor 
ligands and mitochondrial-induced apoptosis. Cancer cells typically 
have disrupted apoptotic pathways with an imbalance of pro-versus 
anti-apoptotic proteins [5]. Low levels of ceramide are observed in 
certain breast, colon and kidney cancers [123-126]. Elevation of ce-
ramide levels should favor receptor clustering and therefore apopto-
sis [127]. Additionally, ceramide-enriched “platforms” can allow cell 
membrane invaginations sufficient to interact with mitochondria and 
trigger apoptosis in a blurring of the extrinsic and extrinsic pathways 
(the so-called “kiss of death”) [128,129]. Ceramide has the additional 
problem of being severely hydrophobic so drug delivery is a factor 
that needs to be considered if trying to directly increase ceramide 
levels by supplementation [130]. In the light of often contradictory 
results it is now becoming fairly obvious that a more refined rheostat 
model needs to be developed which could take into account such con-
founders as subcellular location and differing alkyl chain lengths, etc. 
in ceramide and its derivatives (see CerS previously) [131]. It may be 
that a pharmacogenetic profile will need to be taken of the patient’s 
sphingolipid-metabolizing enzymes to be fitted to a model to predict 
the desired, patient-specific manipulation, possibly requiring multiple 
pharmacological agents. Finally the rheostat model can be by-passed 
by targeting the actual receptors involved. In the case of S-1-P, these 
are the S1PR’s activated by extracellular S-1-P, especially S1PR1 whose 
activation is involved in several cancers. This particular avenue of re-
search is now producing second generation drugs. One of the most 
promising has been fingolimod which is a sphingosine analog that is 
phosphorylated into an S-1-P analog by SphK2 and acts as an agonist 
on all the S1PR’s except S1PR2 [132,133] (Figure 2). Although an ag-
onist it actually reduces the effect of S1PR1 activation by triggering 
receptor internalization [132,134], a form of cellular adaptation. Ad-
ditionally fingolimod itself can induce apoptosis via the dephosphory-
lation of oncogenic proteins by PP2A [135-138]. However, fingolimod 
was found not to be particularly useful in combatting cancer but in 
treating Multiple Sclerosis (MS) where its inhibition of immune cell 
movement into the CNS was efficacious [69]. This drug has been ap-
proved by the FDA for the treatment of MS for several years now and 
is reviewed in far greater depth in the 2013 Nature Reviews of Drug 
Discovery (volume 12, number 9) which lists many sphingomimet-
ics, etc. already being developed to treat various pathologies. There is 
still much to learn about sphingolipids but the future looks promising 
for the development of a plethora of new drugs that can manipulate 
sphingolipid metabolism and treat many pathologies.
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