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Introduction
 The provision of high-quality and cost-effective feed is considered 
a fundamental requirement for achieving profitability and success in 
the field of aquaculture [1]. The quality of feed not only affects the 
overall production, but also has a close connection with the water 
quality connected with it, hence exerting a substantial influence on 
the welfare of the species being farmed [2,3]. The effectiveness of 
feed quality is primarily determined by the proper balance of vital 
nutrients within the feed. Consequently, feed manufacturers must pri-
oritize this aspect by giving the specific consideration [4].

 Micronutrients are defined as the indispensable constituents of 
feed that are necessitated in minute quantities. Micronutrients have a 
significant impact on several biochemical, metabolic, and physiologi-
cal processes in animals, leading to enhanced growth, production, and 
immunity [5]. The significance of micro-nutrients in the production of 
farmed aquatic species has been found to be of considerable impor-
tance [6,7]. Vitamins and minerals are essential micronutrients that 
must be obtained from the diet, as animals are unable to synthesize 
them endogenously. Multiple studies have shown evidence for the ben-
eficial impacts of various micronutrients, such as vitamins and miner-
als, on the growth, reproductive functions, and immune responses of 
animals [8]. Vitamin E, functions as an antioxidant, thereby inhibiting 
the oxidation of crucial fatty acids [9,10]. The researchers noted that 
the addition of dietary VE supplementation had a substantial positive 
impact on the production of many species, such as the Indian main 
carp Rohu (Labeo rohita) [11], Yellow catfish (Pelteobagrus fulvidra-
co) [12], and Black Sea bream (Acanthopagrus schlegeli) [13]. In a 
similar vein, the introduction of dietary VE demonstrated a notable 
enhancement in both the immune response and disease resistance of 
Japanese flounder (Paralichthys olivaceus) [14]. Vitamin E plays a 
crucial role in the regulation of normal physiological processes and 
metabolism in fish. Multiple studies have provided confirmation that 
the administration of VE has been shown to boost the growth, immu-
nity, and illness tolerance of fish [15,16].

 This review presents an analysis and discussion of the published 
studies that examine the importance of undertaking in the context of 
farmed finfish. The published article has received significant atten-
tion.
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Abstract
 Vitamin E (VE), an important lipid-soluble antioxidant, has great 
influence on growth and maintenance in animal. Vitamin E is a ge-
neric term for all naturally occurring tocopherols and tocotrienol as 
well as their derivatives. VE has a strong reducibility, which protects 
important substances from oxidation in vivo and has an important 
role in the maintenance of normal metabolic processes and physio-
logical function. Vitamin E is required to protect the cell membrane 
from peroxide damage, maintain immunity and enhance resistance 
to disease, whilst it is tightly associated with embryonic develop-
ment, nucleic acid metabolism, ascorbic acid biosynthesis as well 
as maintenance of tissue quality. Vitamin E has become one of the 
most important vitamins in aquatic animal breeding. Nutrition in the 
diet of broodfish is known to have a profound effect on gonad de-
velopment, fecundity, quality of eggs and larvae. Although precise 
information on the nutritional requirements of broodstock for gonad 
maturation is scanty, it has been found that quantity and quality of 
feed as well as the feeding regime is important for maintenance of 
egg quality and successful spawning. Vitamins are one of the most 
effective additives to nutritionally complete diets for fish production. 
As a fat-soluble vitamin, it is the most effective chain-breaking, lip-

id-soluble antioxidant in biological membranes, where it contributes 
to membrane stability. It protects critical cellular structures against 
damage from oxygen free radicals and reactive products of lipid per-
oxidation. Aquatic animals have high levels of unsaturated fatty ac-
ids to maintain cell membrane fluidity especially at low temperatures; 
it is assumed that vitamin E plays an important role in this context. 
This study provides a concise summary of the current body of ev-
idence concerning the physiological roles of VE in farmed fish, as 
well as the impacts of supplemental VE on fish growth performance 
and reproduction.
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Functional Role of VE

 The dietary levels of other antioxidants or pro-oxidants, such as 
vitamin C (VC) or selenium (Se), may also influence VE require-
ments. In addition, the degree of lipid oxidation may influence the 
fish’s ability to absorb these lipids and modulate their VE antioxi-
dant response [17]. It has been reported that secondary lipid oxidation 
products influence the sensory properties of oil, whereas primary lipid 
oxidation products (hydroperoxides) are odorless and tasteless. Con-
sequently, some fish can consume oxidized lipids while others cannot 
[18]. The modulation of antioxidant enzymes by MCs results in the 
formation of reactive oxygen species, which can contribute to oxida-
tive damage in animal tissues. When fish were exposed to MCs, lipid 
peroxidation increased [19], whereas VE supplementation protected 
the fish from MC-induced oxidative damage in a dose-dependent 
manner. Consequently, VE administration increases the activities of 
antioxidant enzymes such as catalase, superoxide dismutase, glutathi-
one peroxidase, and glutathione reductase [20].

 Dietary VE supplementation had no effect on liver antioxidant 
enzyme activities, liver glutathione content, total mercapthans, or 
phagocytic chemiluminescent response and subjected to normoxic 
and moderate oxidative stress [21,22]. This moderate protective ef-
fect of VE against lipid peroxidation in salmonids may be attributable 
to the presence of an additional antioxidant, astaxanthin. Astaxanthin 
can prevent vitamin E from oxidizing, thereby sparing the vitamin E 
[23,24]. This suggests that it would not be necessary to supplement 
VE in salmonid diets in order to promote antioxidant defences, over-
all health, and growth if sufficient quantities of astaxanthin and VE 
are already present in the feed formulation’s raw materials. Vitamin 
E is essential for fish and prawns because they are rich in polyunsat-
urated fatty acids (PUFA), which are highly prone to oxidation. Ox-
idation of PUFA results in the formation of a number of primary and 
secondary toxic products that can cause a wide range of problems in 
fish and prawns, such as oxidative stress, a decrease in growth rates, a 
decrease in immune response, a loss of nutritional value, an unpleas-
ant flavor, or a decrease in quality and shelf life [25,26]. The perox-
idation of fatty acid reduces membrane fluidity, increases membrane 
permeability, and inactivates enzymes bound to the membrane. The 
antioxidant effectiveness of VE supplementation may also depend on 
the dietary lipid content or the size and developmental stage of the 
fish. Therefore, fish that require low levels of dietary lipids require 
low levels of VE in comparison to fish that require high levels of 
dietary lipids [27]. In addition, the increase in dietary PUFA increases 
the VE requirements for antioxidant protection, especially in rapidly 
growing species and juvenile fish [28-30].

 However, excessive production of unsaturated lipid renders mem-
branes more susceptible to oxidative damage, which can impair cellu-
lar function. Therefore, antioxidant supplements such as VE can play 
a significant role in preventing cellular injury in fish. This suggests 
that the VE requirement for fish increases with decreasing water tem-
perature. In comparison to VE-deficient fish, VE supplementation im-
proved blood parameters and survival of fish species [31]. In addition,  

dietary lipid levels and sources modulate the response to cold stress 
[32,33], supporting the adaptive function of VE in aquatic organisms 
against cold stress.

Vitamin E/Vitamin C ratio for Growth Performance of Fish

 Vitamin C is widely recognized as a reducing agent, functioning 
as an electron donor. It serves as an important antioxidant, effectively 
scavenging free radicals and reactive oxygen species. Consequent-
ly, VC plays a crucial role in preventing cellular damage caused by 
radicals, safeguarding cell membrane integrity, preserving cytosol 
components, and facilitating the regeneration of vitamin E when both 
vitamins are present. The antioxidant action of VC relies on its capac-
ity to replenish or preserve VE from membrane α-tocopherol radicals 
[34]. This implies that both VC and VE exhibit a synergistic effect in 
their roles as significant antioxidants, growth promoters, and stimu-
lators of the immunological response. In addition, they fulfil many 
physiological roles in aquatic creatures that are raised in captivity 
[35]. Nevertheless, the synthesis of VC within living organisms is not 
possible due to the absence of the L-gluconolactone oxidase enzyme 
in fish, which is essential for the biosynthesis of VC [36,37]. Hence, 
the presence of exogenous vitamin C is crucial for the optimal perfor-
mance and physiological processes of fish.

 Vitamin C, also known as ascorbic acid, is a water-soluble vita-
min that possesses antioxidant properties. It has the ability to mitigate 
oxidative stress in animals by neutralizing the oxidative free radi-
cals generated through cellular processes or external stress-inducing 
factors [38]. The majority of these radicals are classified as reactive 
oxygen species, encompassing hydrogen peroxide, hydroxyl radical, 
and superoxide anion. These species have the potential to inflict harm 
onto cellular membrane constituents, including lipids, carbohydrates, 
proteins, and DNA [39].

Inhibition of the fat peroxidation

 The vitamin C has the potential to inhibit lipid peroxidation and 
provide cellular protection against oxidative stress. Comparable find-
ings were also documented in studies conducted on Atlantic salmon 
[40], Channel catfish [41], and European seabass [42]. These inves-
tigations revealed that the inclusion of vitamin C in the diet of these 
fish species provided protection against vitamin E insufficiency and 
led to elevated levels of α-tocopherol in their tissues. VC is capable 
of protecting VE against membrane α-tocopherol radicals, thereby 
exerting an antioxidant effect [43]. Therefore, the interaction between 
VC and lipids has an impact on lipid metabolism by promoting the re-
tention of VE (vitamin E) and/or inhibiting the oxidation of VE. This 
suggests that VC possesses a potent lipid antioxidant effect, which 
works in conjunction with VE to enhance the overall health and vi-
tality of fish. The VC-VE interaction mechanism has been associated 
with the differential susceptibility to VE deficiency observed in vari-
ous species of farmed fish [44,45].

 The growth performance of channel catfish was found to be im-
paired when they were fed diets lacking in vitamin VC, irrespective of 
supplementation with vitamin E. Moreover, the presence of vitamin 
E deficiency symptoms was not observed in fish that were provided 
with a diet lacking in VE but supplemented with vitamin C [46,47]. 
The preventive function of VC in situations where VE is lacking or 
insufficient has been observed in rainbow trout and Atlantic salmon 
[48,49]. The assessment of antioxidant enzyme activity, such as su-
peroxide dismutase, catalase, or glutathione peroxidase, can serve  
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as a reliable measure of lipid peroxidation and the resulting cellular 
harm [50-53]. The heightened release of these enzymes serves to in-
hibit lipid peroxidation and mitigate cellular harm. The simultaneous 
presence of vitamin VE and VE in suitable proportions can produce 
combined antioxidant actions, resulting in the regulation of the oxi-
dative stress indicators discussed earlier, protection against cellular 
damage caused by free radicals, and inhibition of lipid peroxidation 
[54]. Moreover, the inclusion of a high concentration of dietary VC 
resulted in a notable decrease in the levels of secondary lipid oxida-
tion products, specifically thiobarbituric acid reactive substances, in 
hybrid Tilapia (Oreochromis niloticus × O. aureus) that were fed a 
diet lacking in vitamin E [55].

 However, an excessive intake of vitamins C and E can lead to their 
pro-oxidant properties being manifested in living organisms, resulting 
in the occurrence of oxidative stress. The use of excessive quantities 
of vitamins can result in a notable decrease and disruption in the VC/
VE ratio, hence hindering the ability to restore VE levels with VC 
supplementation [56].

Growth performance and health condition of VE/
VC supplemented diet
 The supplementation of dietary VC resulted in an elevation in liv-
er VE concentration, however the administration of supplementary 
VE did not have any impact on liver VC levels [57-58]. In contrast, 
the administration of high amounts of dietary VC or VE did not yield 
any significant enhancement in the immunological response. The ad-
dition of supplemental VC at a dosage of 100 mg kg−1 feed resulted in 
enhanced growth, feed efficiency, survival rates, and improvements in 
haematological parameters. Furthermore, the inclusion of VC in the 
diets of catfish effectively avoided the occurrence of vertebral defor-
mities [59]. The supplemetation of dietary VC intake resulted in an el-
evation of liver α-tocopherol levels, so providing evidence to support 
the hypothesis that VC has a sparing impact on vitamin E [60-62].

 The optimal growth, immunological response, and disease resis-
tance of fish are dependent on the ratio between vitamins C and E 
in their meals. Previous studies have indicated a potential mitigating 
effect of VC on VE when administering large doses of VC to diets 
lacking in VE. The phenomenon of VE sparing has been document-
ed in various species, including Atlantic Salmon, hybrid Tilapia, and 
Channel catfish [63-65]. The inclusion of approximately 100 mg of 
dietary VC/kg of feed significantly enhanced the development and 
feed efficiency of Nile Tilapia. On the other hand, the level of vitamin 
E present in the basal diet was shown to be adequate in supporting the 
overall performance of the fish [66-69]. However, a dosage of 50 mg 
of vitamin E/kg of body weight was found to be essential for achiev-
ing the highest level of survival in cases when dietary vitamin C was 
insufficient [70-74].

Lipid interaction with VE

 The fish diets and tissues containing significant amounts of high-
ly unsaturated fatty acids (HUFA) are susceptible to lipid oxidation, 
which releases a number of toxic byproducts and causes a number of 
animal problems [75-79]. As an antioxidant, the presence of VE in the 
fish body prevents lipid oxidation, whereas a decrease in VE concen-
tration decreases the VE/PUFA ratio [80]. Through the regulation of 
the microsomal electron chain, which is a component of the desatu-
rase complex, VE also plays an important role in the desaturation of 
n-3 and n-6 PUFA [81-82]. This means that as the HUFA content of a  

fish’s diet increases, so does its demand for VE [83,84]. In support, vi-
tamin E requirement of Common carp (Cyprinus carpio) [85], Blue ti-
lapia (Oreochromis aureus) [86], Grouper (Epinephelus malabaricus) 
[87] increased with in- creasing dietary lipid (PUFA) levels. A high 
supplementation of VE (200 mg kg-1 diet) substantially decreased liv-
er VE when fish oil was added to the diet. These findings support VE’s 
function as an antioxidant that prevents lipid oxidation.

 It has also been reported that the use of oxidized oil in fish diets 
causes skeletal abnormalities [88], lowers blood glucose [89], in-
creases haemoglobin level and glycolytic activity [90], and decreases 
VE concentration in fish tissues [91]. Appropriate levels of -tocopher-
ol supplementation can partially or completely alleviate these symp-
toms. In contrast, as lipid peroxidation of frozen seafood products 
progresses, α-tocopherol concentrations in these products decrease 
[92]. This, in turn, causes the grade of seafood to decline. Supplemen-
tation of VE to oxidized lipid in aquaculture feed has been shown to 
reduce lipid peroxidation and enhance fish performance, health status, 
and product quality, as demonstrated in Sea bream (Acanthopagrus 
schlegeli) [93], hybrid Tilapia (Oreochromis niloticus X Oreochromis 
aureus) [94] and Turbot (Scophthalmus maximus) [95] and Gilthead 
Sea bream (S. aurata) [96].

Impacts of VE with dietary selenium (Se)

 The beneficial synergistic effects of dietary selenium (Se) and vi-
tamin E (VE) were seen in Grouper (Epinephelus malabaricus) [97-
99] and Yellowtail kingfish (Seriola lalandi) [100]. The growth rates 
of fish fed diets with low levels of or lacking in vitamin E were en-
hanced by the addition of supplementary selenium. Furthermore, the 
concurrent administration of both selenium and vitamin E resulted in 
improved growth and health indices. Additionally, the growth, intes-
tinal health, blood parameters, oxidative status, and immune relat-
ed gene expression of Nile Tilapia (O. niloticus) [101] and Rainbow 
trout were enhanced with food supplementation of Nano Se and/or 
VE [102].

 The concurrent presence of micronutrients yields synergistic ef-
fects in the regulation of haematological responses associated with 
high density stress. According to findings in rainbow trout, the im-
plementation of this approach has the potential to mitigate the con-
sequences of oxidative stress, enhance antioxidant levels, and bolster 
innate immunological reactions [103]. Extensive research has been 
conducted on the interplay between VE and Se in various fish spe-
cies to support the notion that VE and Se exhibit a synergistic effect, 
resulting in the preservation of each other’s metabolic demands. Ad-
ditionally, a lack of dietary selenium (Se) can lead to decreased levels 
of tissue vitamin E, while a deficiency in both micronutrients can re-
sult in conditions such as anaemia, muscular dystrophy, and abnormal 
protein levels in the plasma [104-107]. This implies that adequate 
supplementation of either vitamin E or Selenium can compensate for 
the lack of the other nutrient. Both Se and VE are recognized as im-
portant biological antioxidants that play a crucial role in preventing 
the oxidative damage of cell membranes resulting from the peroxida-
tion of polyunsaturated fatty acids (PUFAs) [108-110].

 The inclusion of Selenium has the potential to decrease the dietary 
vitamin E required for maintenance purposes, as well as enhance the 
preservation of VE in animal tissues and blood plasma lipoproteins. 
Likewise, vitamin E have the capacity to diminish the Selenium ne-
cessity by impeding the depletion of Selenium within the body or by 
upholding its bioactive state. Research has indicated that the inclusion  
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of both Vitamin E and Selenium in the diet of fish can effectively 
shield them against oxidative damage caused by the oxidation of di-
etary oil. Previous studies have also reported the absence of syner-
gistic effects of dietary vitamin C, vitamin E, and Selenium on the 
growth performance of Nile Tilapia [111]. Nevertheless, the provision 
of adequate dietary supplementation of VE or VC individually result-
ed in a significant enhancement of growth performance.

Dietary VE requirements for fish growth
 It is important to highlight that there are several interactions be-
tween VE and other nutrients, including VC, selenium, and dietary 
lipid levels and composition, which have an impact on fish perfor-
mance and health status. Hence, it is imperative to consider these in-
teractions when establishing the dietary VE requirement for aquacul-
ture fish. Furthermore, it is important to note that the VE need may 
vary across different response variables. To clarify, the quantity of vi-
tamin E needed for various biological processes such as development, 
antioxidant capacity, immune response, meat quality, and reproduc-
tive effectiveness can exhibit substantial variations across species and 
even within different size categories within the same species.

Vitamin E requirements for fish

 The VE need of cultivated fish exhibits considerable variation, 
contingent upon factors such as the species and size of the farmed 
fish, the sources and quantities of dietary lipids, and the conditions 
under which they are cultured. The dietary need of VE is significantly 
influenced by the function for which it is provided. Several freshwater 
fish species were shown to have relatively low voluntary energy (VE) 
requirements, which can be attributed to their diets including com-
paratively low levels of lipids. For instance, a dosage range of 40-66 
mg VE kg−1 feed was shown to be effective in enhancing the growth 
performance of sub-adult Nile Tilapia [112,113]. 

 However, a greater dosage range of 100-200 mg VE kg−1 was 
necessary for achieving similar results in fingerlings [114]. A signifi-
cant increase of over ten times in vitamin E was required to enhance 
fillet texture and serum antioxidant capacity. Similarly, a higher VE 
retention was observed in fish flesh, along with the activation of 
the immune system response and antioxidant capacity in fish [115]. 
The optimal performance of Blunt snout bream (Megalobrama am-
blycephala) larvae (0.59 g) was observed when a low dietary VE 
concentration of 55.5 mgkg−1 was provided [116]. Nevertheless, it 
has been observed that the early developmental phases of Grass carp 
(Ctenopharyngodon idellus) [117] and Rohu (Labeo rohita) [118] ex-
hibit a greater demand for vitamin E compared to their later stages of 
growth.

 Within a single species, the need for vitamin E can also change as 
a species develops. In contrast to sub-adult fish, which need substan-
tially greater VE concentrations in their diets for improved non-spe-
cific immune responses and high VE retention in the liver, kidney, 
muscles, and gonads, juvenile eels (15 g) require very little VE (21 
mg kg−1) for optimal growth [119]. These results clearly show that a 
variety of factors influence the VE requirements of farmed fish. To 
get accurate data and create meaningful comparisons, these elements 
should be considered when evaluating the VE requirements of farmed 
fish.

 The development rates, feed efficiency, and antioxidant activity 
of Channel catfish (Ictalurus punctatus) and Yellow catfish (Pelteo-
bagrus fulvidraco) were supported by small quantities of VE (33–45  

mg kg−1). However, a notably greater quantity of VE was needed for 
Dark barbel catfish (Pelteobagrus vachelli) to function at their best 
[120-124]. The variations in fish sizes and developmental stages, food 
lipid levels and sources, fatty acid content, and water temperature 
have all been linked to these disparities. For instance, compared to 
dark barbel catfish, which require roughly 20% of their diet in lip-
ids, Yellow catfish require significantly less (approximately 8–11%), 
which may account for the latter species’ higher VE requirement 
[125-130]. Furthermore, the antioxidant activities and immunological 
response of yellow catfish were found to be strongly influenced by 
the fatty acid profiles and dietary lipid sources [130-134]. The growth 
performance Yellow catfish and antioxidant response were enhanced 
by modest amounts of dietary arachidonic acid (ARA). The growth 
performance, immunological response, and antioxidative activity of 
these fish have all been optimized by the ideal pairing of lipid level 
[135-136].

 Due to the high levels of lipids and n-3 HUFAs in marine fish 
diets, it is reasonable to infer that marine fish have higher VE require-
ments than freshwater fish. However, this may not always be the case, 
as some marine species require low dietary VE levels for optimal 
performance. For optimal performance, Grouper (Epinephelus mal-
abaricus), European Sea Bass (Dicentrarchus labrax), Coho Salmon 
[110], and Cobia (Rachycentron canadum) [125] require less than 100 
mg VE kg-1 of forage. In addition, only 38 mg VE kg-1 was adequate 
to sustain the growth of Parrotfish (Oplegnathus fasciatus), despite 
the fact that >500 mg kg-1 was required for optimal immune response 
[137-139].

 In contrast, other marine fish species require much higher levels 
of dietary VE for growth and health. For example, subadult Gilthead 
Sea Bream requires 1200 mg kg-1 of food for optimal health and 
non-specific immune response [140]. In addition, it has been reported 
that larval Sea Bream supplement their diet with significantly more 
VE [29,30]. The highest survival, growth, and osteocalcin gene ex-
pression, as well as the lowest incidence of bone anomalies, were 
observed at 1783, 1921, and 7000 mg kg-1 VE, VC, and taurine, re-
spectively [29]. Moreover, when Gilthead Seabream larvae are fed 
exceedingly high levels of dietary HUFA, it appears that even higher 
levels of dietary VE are required for optimal performance [30]. This 
study also demonstrates the antioxidant effect of VE and suggests a 
greater protection value when HUFA are scarce. Increasing dietary 
VE and VC to 3000 mg kg-1 results in an unbalanced VC/VE ratio 
in the body, up-regulation of antioxidant enzyme genes, the highest 
incidence of bone anomalies, and the lowest survival rates [141].

 The previously mentioned factors (fish sizes and maturation stag-
es, dietary lipid and fatty acid profiles, other micronutrients, water 
temperature, etc.) that influence the VE requirement of freshwater fish 
may also influence the response of marine fish to dietary VE. Due to 
the high dietary content of LC-PUFA and pro-oxidants such as min-
erals, marine fish larvae fed inert diets become extremely susceptible 
to oxidative stress [71]. As reported in Sea Bass larvae, the inclusion 
of high levels of anti-oxidants in the diet, such as VE, is necessary 
to prevent oxidative damage and enhance larval survival and perfor-
mance [142]. These studies also demonstrated that the presence of 
other dietary nutrients, such as VC, Se, and taurine (and their ratios 
with VE), modulates the VE requirements of marine fish [29,71] Also 
in meagre, the VE requirement (800 mg kg-1) is higher in the early 
phases of life than in the later stages of growth [36].
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 A number of studies indicated that dietary VE supplementation 
considerably improved the quality of various fish products. When 
Coho Salmon were fed various antioxidants, a VE-supplemented 
diet produced the greatest sensory and physical qualities in the 
long-term frozen salmon product [143-145]. Textural character-
istics, cohesiveness, and chewiness of GIFT fillets significantly 
more Nile Tilapia were produced by fish fed VE-supplemented 
diets than by those fed VE-deficient diets [144]. In addition, the 
addition of VE increased serum and muscle SOD and CAT activ-
ities, and decreased serum and muscle MDA levels, supporting 
the antioxidant role of VE. Also, as dietary VE increased, muscle 
HUFA in Meagre (Argyrosomus regius) increased and saturated 
fatty acids and TBARS values decreased [34]. Similarly, a positive 
correlation was observed between dietary VE levels and concen-
trations of α -tocopherol in Turbot (S. maximus), Atlantic Halibut 
(H. hippoglossus), and Rainbow Trout fillet [142,146]. In addition, 
prolonged feeding with high VE diets increased the proportion of 
total USFAs, PUFAs, and n-3 fatty acids, while decreasing the 
proportion of Saturated Fatty Acids (SFAs) and n-6 fatty acids. 
In addition, the addition of tocopherols substantially decreased 
TBARS levels in Carp (Ciprinus carpio) fillets stored at 5°C when 
compared to samples lacking tocopherols [147].

 As evidenced in the case of Red Sea Bream (Pagrus major), 
vitamin E may also improve the fillet quality of fish fed Ox-
idized Fish Oil (OFO) [120] Compared to fish fed raw oil, fish 
fed OFO had higher fillet TBARS values and lower VC and VE 
concentrations during storage. In addition, supplementation with 
VE increased fillet VE levels and decreased fillet TBARS values, 
whereas supplementation with VC had no effect on fillet quality 
parameters. Consequently, the positive effects of VE on the fillet 
quality of fish fed OFO have been linked to the reduction of lipid 
peroxidation, saturated fatty acids, and TBARS values, in addition 
to the increase in VE body content [88,95,138]. Other antioxi-
dants, such as VC and Se, may also contribute to the quality of fish 
fed OFO.

Reproductive performance of fish treated with VE supple-
mented feed

 It has been hypothesized that quickly expanding tissues exhibit 
elevated metabolic rates, leading to the generation of significant lev-
els of free radicals [148]. The present study revealed that the levels 
of antioxidant enzymes, namely lipoxygenase, Superoxide Dismutase 
(SOD), Catalase (CAT), peroxidase, and glutathione reductase, ex-
hibited an upward trend in five distinct species of fish inhabiting the 
Black Sea. Notably, this increase was observed during the develop-
mental stages of eggs and continued until the hatched larvae phase. 
This implies that the inclusion of antioxidants is essential for safe-
guarding tissues against peroxidation, so indicating that VE may have 
a notable impact on these metabolic processes. Regarding this matter, 
elevated concentrations of VE were detected in the eggs and seminal 
fluid of European Seabass (Dicentrarchus labrax) both prior to and 
following egg fertilization. Furthermore, during the developmental 
stages of the embryos and upon hatching, substantial quantities of VE 
were also present. Conversely, deceased eggs and embryos with low 
survival rates exhibited diminished levels of VE [149]. The results of 
this study indicate that VE plays a crucial role in the growth and mat-
uration of eggs and larvae in this particular fish species. Furthermore, 
the incorporation of VE and Arachidonic Acid into the diet resulted in 
a combined impact that enhanced non-specific immune responses in  

broodstock of the Japanese Eel species (Anguilla japonica) [150]. A 
positive linear connection was observed between the intake of dietary 
VE and the concentration of VE in the ovarian tissue.

 The dietslacking in VE have been observed to result in under de-
veloped reproductive organs, reduced rates of egg fertilization and 
hatchability, and decreased survivalrates of larvae [134,137,138,139] 
When Zebrafish (Danio rerio) and Goldfish (Carassius auratus) 
brood stock were provided with diets deficient in VE, they displayed 
reduced reproductive capacity and delayed spawning. Further more, 
the viable embryos produced by these brood stock had lower con-
cent rations of VE, and exhibited higher rates of malformation and 
mortality compared to embryos from brood stock that were fed diets 
supplemented with VE.

 Themobilization of Vitamin E, primarilythroughlipoproteins, 
has been documented during vitello genesis in various fishspecies   
[138-140]. During the reproductive season, it was observed that 
the inclusion of a VE-supplemented meal (1000 mg kg−1) in the 
feeding regimen of Japanese Flounder (Paralichthys olivaceus) 
broodstock resulted in the association of α-tocopherol with vi-
tello genesis. Further more, it was found that α-tocopherol was 
carried to the gonads and retained the rein. Following the initia-
tion ofdevelopment, serum α-tocopherol was subse quentlymixed 
with the progress ivelyrising lipoprotein. Moreover, theadminis-
tration of vasotocinanaloguestoprimarypituitarycellscultured in 
vitro has been shown to induce the upregulation of gonad otropin 
hormones, specifically Follicle-Stimulating Hormone (FSH) and 
LuteinizingHormone (LH), in thepituitarygland of Turbot (Scoph-
thalmus maximus) [141].

Environmental implications and recommendations

 There is ample evidence available that clearly demonstrate an in-
crease in vitamin E requirements after consuming high levels of di-
etary n-3 polyunsaturated fatty acids, such as those found in fish oil. 
Given the anticipated significant incorporation of plant proteins and 
oils, namely n-6 Polyunsaturated Fatty Acids (PUFA), in fish diets, it 
is plausible that reducing dietary Vitamin E levels may be necessary 
to enhance fish performance and mitigate lipid peroxidation [25]. The 
nutritional needs of fish may undergo alterations in response to the 
presence of other micronutrients,such as Se and VC, which interact 
with VE. This implies that future study should prioritise the reassess-
ment of these micronutrients,given the anticipated formulations of 
plant-based aquafeed.

 The utilization of plant proteins and oils,particularly those from 
oilseeds, has been experiencing a notable increasein their application 
within aquafeeds. Extensive study has been conducted on the partial 
or complete replacement of fishmeal and fish oil with plant-derived 
alternatives [146].Based on the aforementioned forecast, it is prob-
able that there would be a substantial decrease in the utilization of 
fishmeal and fish oil in fish diets. As a result, it is probable that the 
requirements for VE will undergo modifications. 

 Fish has the ability to acclimatize to fridge temperature through 
the process of biochemical control, namely by modulating the fluidity 
of the membrane bilayer. This adaptive mechanismis crucial for main-
taining optimal cellular functionality under low temperature condi-
tions [37,38]. In such circumstances, the maintenance of membrane 
homeostasis is ensured through the synthesis of abundant quantities 
of low molecular weight, unsaturated fatty acidsinside the lipids of  
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cellular membranes [39]. Increased lipid unsaturation in cellular 
membranes can lead to heightened susceptibility to oxidative damage, 
resulting in potential impairment of cellular functioning.This implies 
that Vitamin E may have a noteworthy impact as an antioxidant in 
mitigating the anticipated cellular harmcaused by low temperatures. 
Antarctic fish exhibit significantly higherplasma VE concentrations 
compared to temperate water fish species [147].

 In terrestrial vertebrates, such as land animals, elevated tempera-
tures have been observed to decrease the levels of many vitamins, 
including VE, and micro minerals in the serum [148]. Given that VE 
is recognized as the primary defensive mechanism against lipid per-
oxidation induced by heat stress, it is advisable to increase the dietary 
intake of this micronutrient, together with other essential vitamins 
and minerals, in order to mitigate the effects of heat stress [149]. The 
fish had reduced levels of visceral VE concentrations, haematological 
parameters, alternative complement activity, and survival when sub-
jected to stressful water temperatures and fed a diet lacking in VE, in 
comparison to those that were provided diets enriched with VE [150]. 

Conclusion

 Farmed fish are subjected to different types of stress, in cluding 
grading, transfer, crowding, and vaccination, which can expose the 
fish to differen trisks leads to an increase in the spread of diseases, 
negatively affecting on the growth of fish, causing fish to be exposed 
to oxidative stress. The trace elements which is utilized by the organ-
ism in both organic and inorganic forms can improve the  performance 
and health of fish through its entry into the synthesis of antioxidant 
enzymes. The most important action of Seleniumis its action as an 
antioxidant, which is the formation of selenocysteine, which is part of 
glutathione peroxidase, and therefore Selenium affects the activity of 
glutathione peroxidase. Vitamin E is an essential fat-soluble antioxi-
dant that prevents oxidation and the formation of free oxygen radicals 
in the lipids of cell membranes. By enhancing immune system func-
tion, stress reduction, and boosting disease resistance, vitamin E is 
also crucial for promoting fish health. In farmed fish, optimal vitamin 
E levels have been shown to enhance stress to lerance, antioxidant 
properties, and growth performance. The inter action of Selenium and 
vitamin E has been discovered to have a strong synergis ticeffect.
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