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Abstract

Epstein-Barr Virus (EBV) latent infection is associated with a
variety of lymphomas and carcinomas. Interferon (IFN) Regulatory
Factors (IRFs) are a family of transcription factors, among which
IRF7 is the “master” regulator of type | IFNs (IFN-I) that defends
against invading viruses. Robust IFN-I responses require a positive
feedback loop between IRF7 and IFN-I. In recent years, we have
discovered that IRF7 is significantly induced and activated by the
principal EBV oncoprotein--Latent Membrane Protein 1 (LMP1);
however, IRF7 fails to trigger robust IFN-I responses in EBV latency.
We believe this intriguing finding is critical for EBV latency and
oncogenesis, yet the underlying mechanism of this paradoxical
phenomenon remains unclear. It is well known that tyrosine
phosphorylation of most components of the IFN-I Jak-STAT pathway
is essential for its signaling transduction. Thus, we have performed
phosphotyrosine proteomics. We have found that the IFN-I Jak-STAT
pathway is inactive due to the attenuated STAT2 activity, whereas
the IFN-Il Jak-STAT pathway is constitutively active, in EBV
latency. We further confirmed these results by immunoblotting. This
pilot study provides valuable information for the critical question
regarding how the IRF7-mediated IFN-I response is evaded by
EBV in its latency, and will prompt us to elucidate the underlying
mechanisms.

Introduction

Epstein-Barr Virus (EBV) is of increasing medical importance as
it is the etiologic agent in various lymphomas and carcinomas [1-2]. It
is now generally accepted that EBV causes, modifies, or contributes to
the genesis of more malignancies than any other tumor virus does [3].

The Interferon Regulatory Factor (IRF) family of transcription
factors plays pivotal roles in the regulation of multiple facets of host
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defense system, among which IRF7 is the “master” regulator of type I
Interferon (IFN-I) response to pathogenic infection [4]. Robust IFN-I
response during infection requires a positive feedback loop between
IRF7 and IFN-I [5-6]. Aberrant production of IFN-I, however, is
associated with autoimmune disorders and malignancies [7-9]. Thus,
tight regulation of IRF7 is important in balancing the appropriate
immune response to clear invading pathogens while preventing
immune-mediated pathogenesis [10].

IFNs exert their functions through induction of IFN-Stimulated
Genes (ISGs) via Jak-STAT pathways [11-13]. The IEN-I Jak-STAT
pathway comprises of IFNAR1/2, Jakl, Tyk2, STAT1/2, and IRF9
[14]. Following IFN-I binding to IFNARs, signaling via protein
kinases leads to tyrosine phosphorylation and activation of IFNARI
at'Y,  [15], Tyka(Y, /Y and Jak1(Y . /Y and then to that

466 1054 1055) 1034 1035)’
of STAT1(Y, ) and STAT2(Y,,, and S, ) [16]. The phosphorylated
STAT1/2 then dimerize and associate with IRF9 to form a complex
3 (ISGF3). ISGF3
translocates to the nucleus and binds to the IFN Stimulated Response
Element (ISRE) to activate the transcription of ISGs [12,17-19]. In
type II IFN (IFNYy) Jak-STAT pathway, Jak2 is auto phosphorylated at
Y1007/Y1008

Y., and S__. Phosphorylated STAT1 then forms a homodimer termed

termed interferon-stimulated gene factor

in response to IFNy, and STAT1 is phosphorylated at both

IFNy-Activated Factor (GAF), which migrates into the nucleus and
binds to the IFNy-Activated Sequence (GAS) to transactivate the
target ISGs.

Recent studies have shown that the IFN-I Jak-STAT signaling
pathway plays a dual role in viral infection. At the early stage of
infection, robust IFN-I response leads to a potent antiviral activity;
meanwhile, it facilitates the establishment and maintenance of
persistent infection by inducing the immune exhaustion program
[20-21]. Therefore, regulation of IFN signaling is pivotal for persistent
viruses, as the outcomes not only shape the immune response to
infection and contribute to the establishment of persistent infection,
but also affect aspects of host cell proliferation and malignancy.
Notably, resistance to IFN-mediated antiviral treatment of
malignancies is a problematic clinical issue, for which the underlying
mechanism is not fully understood [22-24]. Indeed, viruses have
developed diverse strategies to counteract IFN (IFN-I and-II)
Jak-STAT signaling pathways [25-28]. However, only limited
regulators for the Jak-STAT pathways in mammalians have been
discovered including the SOCS, SHP, and PIAS families [29-32],
primarily due to the lack of the application of high throughput screen
strategies. Most of these regulators were originally identified in
Drosophila [30].

To understand how EBV evades IRF7-mediated IFN-I response
in its latency, in this study, we have performed phosphotyrosine
proteomics, and found that IFN-I Jak-STAT pathway is impaired
due to attenuated STAT2 activity. Our results also suggest that
several other Jak-STAT pathways, including IFN-II Jak-STAT
pathway, are active in EBV latency.
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Materials and Methods
Cell lines

DG75 (EBV-), Akata (Type I), Namalwa (Type I), Daudi (Type 3
without LMP1), IB4 (Type 3 LCL), P3HR1 (Type 3 without LMP1),
and JiJoye (Type 3) cells are human B cell lines. These cells were
cultured in RPMI1640 medium plus 10% FBS and antibiotics. All cell
culture supplies were purchased from Life Technologies.

Phosphotyrosine proteomics

Global profiling of tyrosine phosphorylation associated with EBV
infection was performed by cell signaling technology. Whole cell
lysates from IB4 were digested, and phosphorylated peptides were
enriched with IgG control or the antibody p-Tyr-100 (Catalog # 8954)
that recognizes the motif XyX. LTQ-Orbitrap-Velos LC-MS/MS was
performed, and MS/MS spectra were evaluated against Homo sapiens
FASTA database (NCBI), using SEQUEST 3G and the SORCERER 2
platform from Sage-N Research (v4.0, Milpitas CA), with a 5% default
false positive rate to filter the results. Duplicate runs have been
performed.

Immunoblotting

Cells were lysed with NP40 lysis buffer, and cell lysates were
subjected to immunoblotting with the indicated antibodies. Signals
were detected with an Enhanced Chemiluminescence (ECL) kit
following the manufacturers protocol (Amersham Pharmacia Bio-
tech). Phospho-STAT1(Y,) (catalog # 9171), Phospho-STAT2(Y )
(catalog# 4441), and STATI(catalog # 9172) antibodies were
purchased from cell signaling technology. LMP1 antibody (CS1-4)
was from Dako. IRF7 (catalog# SC-74472), STAT?2 (catalog # SC-476),
and GAPDH antibodies were from Santa Cruz.

Results and Discussion

Tyrosine phosphorylation of almost all the components in both
the IFN-I/II Jak-STAT pathways including IFN receptors, Jaks,
Tyk2, and STATS is necessary for signaling transduction upon IFN
stimulation. Thus, phosphotyrosine proteomics is a powerful tool
to detect the activity of Jak-STAT pathways [16]. To check if the
IFN-I and IFN-II Jak-STAT pathways are deregulated in EBV latent
infection, we have taken phosphotyrosine proteomics to profile
global tyrosine phosphorylation in the EBV-transformed lympho-
blastoid cell line IB4. As shown in table 1, we detected activating
tyrosine phosphorylation of STATI(Y, ) and Jak1(Y,,/Y
(for both IFN-T and IFN-II pathways), as well as IFNGR1(Y, ,) and
Jak2(Y, /Y ) (for IEN-II pathway only). However, activating
tyrosine phosphorylation of the other three components in the
IEN-I JAK-STAT pathway, including IFNARI(Y, ), STAT (Y,,) or
Tyk2(Y,,,,/Y,,:)> were not detected. Although IFNGRI(Y,,) has
not yet been documented to be required for activating the IFN-II
signaling, it has been frequently detected in cancers by Mass
spectrometry. In addition, our results show that STAT3, STAT4, and
STATS5 are also active in EBV latency. These results suggest that the
IFN-I Jak-STAT pathway is inactive, but the IFN-II Jak-STAT pathway
and probably a few other Jak-STAT pathways are constitutively active,
in EBV latency.

1035)

Consistent with our findings, EBV LMP1 has been shown to
negatively regulate Tyk2 phosphorylation and the IFN-I signaling

Component | Intensity | Tyrosine Site Peptide identified
IFNGR1 274,598 304 Y*VSLITSYQPFSLEK
IFNGR1 280,266 304; 311 Y*VSLITSY*QPFSLEK
STAT1 584,201 701 EAPEPMELDGPKGTGY*IK
STAT3 433,965 539; 539; 539 LLGPGVNY*SGCQITWAK
STAT3 33,177 704 YCRPESQEHPEADPGAAPY*LK
STAT3 80,391 705; 705 YCRPESQEHPEADPGSAAPY*LK
STAT4 1,522,430 693 GDKGY*VPSVFIPISTIR

LGDLSYLIYVFPDRPKDEVFSKY-
STAT5A 101,007 683 Y*TPVLAK
STAT5A,B | 1,938,120 694; 699 AVDGY*VKPQIK
LLLEGQGESGGGSLGAQPLLQP-
STAT6 468,441 829 SHY*GQSGISM#SHMDLR
. AIET*DKEYY*TVKDDRDSPVFWY-
JAK1 159,479 1030; 1035 APECLM#QSK
. AIET*DKEYYTVKDDRDSPVF-
JAK1 433,328 1030; 1048 WY*APECLMEQSK
AIETDKEY*YTVKDDRDSPVFWY-
JAK1 584,795 1034 APECLMQSK
. AIETDKEY*Y*TVKDDRDSPVFWY-
JAK1 159,479 1034; 1035 APECLM#QSK
. AIETDKEY*YTVKDDRDS*PVFWY-
JAK1 159,479 1034; 1043 APECLM#QSK
AIETDKEYY*TVKDDRDSPVFWY-
JAK1 72,091 1035 APECLM#QSK
JAK1 73,514 598 THIY*SGTLM#DYKDDEGTSEEK
VLPQDKEY*YKVKEPGESPIFWY-
JAK2 114,887 1007 APESLTESK
JAK2 62,639 1008 VLPQDKEYY*K
JAK2 271,716 570 REVGDY*GQLHETEVLLK
Table 1: Deregulated activity of the Jak-STAT pathway components in EBV
latency program IlI
Asterisks (*) indicate that the left Y is phosphorylated; pound signs (#) indicate
oxidized methionine. Sites with underlined fonts indicate that the sites are
responsible for activation of the corresponding components.

[33], and to activate STAT3 and -5 in EBV latency [34-35]. It has
also been reported that Jakl, STAT1 and STAT3, but not STAT2
and STATS5, are constitutively tyrosine phosphorylated in LCL cells
derived from PTLD patients [36], and STAT3 has also been reported
to be constitutively active in EBV-associated immune competent
patients [37]. STAT1 and Jak3 phosphorylation and activation are
triggered by LMP1 [38]. However, Jak3 phosphorylation was not
detected in our MS high throughput analysis.

To verify the deregulation of the IFN-I Jak-STAT pathway in EBV
latency, we analyzed its downstream STAT1/2 activity in EBV- and
EBV+ cell lines with different latency states, including DG75 (EBV-),
Akata (Type I), Namalwa (Type I), Daudi (Type 3 without LMP1),
IB4 (Type 3 LCL), P3HRI (Type 3 without LMP1), and JiJoye
(Type 3) cells, in response to IFN treatment or Sendai Virus (SeV)
infection (Figure 1). Phosphorylation of STAT1/2 was probed with
specific phospho antibodies. The levels of STAT1 and p-STAT1
are constitutively high in cell lines with LMP1 (IB4 and JiJoye), but
p-STAT2 is not readily detected in all tested cell lines (Figure 1).
After 6 h of treatments, STAT?2 activity is still barely detectable (Figure
1A) or significantly lower (Figure 1B) in IB4 and Jijoye cells which
express high levels of LMP1. Similar results were obtained for shorter
time treatments (40 min, data not shown). Namalwa is a special cell
line which resembles IB4 and JiJoye in response to IFN and SeV
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treatments. In all other EBV-positive cell lines (except Namalwa) that
do not express LMP1, STAT2 activity is readily detected after treat-
ments. In all cell lines, STAT1 activity is still robust after the prolonged
treatments (16 h), but STAT?2 activity is only detected in Akata, Daudi

a

nd P3HRI that do not express LMP1 (Figure 1). This finding is con-

sistent with a previous report, in which STAT?2 activity is detected in
Daudi cells [39]. As a target gene induced by IFN-I Jak-STAT, IRF7
is generally higher in LMP1-negative cells after prolonged treatment
with IFN, except IB4 (Figure 1). These observations suggest that

S

TAT?2 activity is repressed in EBV latency, and that LMP1 plays a key

role in this event.

We have provided preliminary observations here showing that

EBV latent infection down regulates IFN-I Jak-STAT pathways,
at least by attenuating STAT2 activity. We next will profile STAT2
regulators and evaluate the potential roles of selected regulators in
EBV evasion of IRF7-mediated IFN-I response. Deregulation of other
Jak-STAT pathways also deserves further investigation in the setting

o

f EBV latent infection.
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Figure 1: Attenuated IFN-I Jak-STAT pathway by targeting STAT2 activity in
EBV latency.

Cells were treated with 500 U/ml IFNa2 (A) or 100 U/ml SeV. (B) IFN-I Jak-
STAT pathway activity was monitored by evaluating STAT1/2 phosphorylation
via immunoblotting with corresponding antibodies.
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