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AT1-R: Angiotensin II Type 1 Receptor
CACNA1C: Calcium Channel Voltage-Dependent L Type Alpha 1C 
Subunit
CACNB1: Calcium Channel Voltage-Dependent Beta 1 Subunit
CaMKII: Calcium/Calmodulin-Dependent Protein Kinase II
COL1A1: Collagen Type I Alpha 1
COL3A1: Collagen Type III Alpha 1
CTGF: Connective Tissue Growth Factor
DGCR8: DiGeorge Syndrome Critical Region 8
ERK1/2: Extracellular Signal-Regulated Kinase1/2
ECM: Extracellular Matrix
ERP: Effective Refractory Period
GJA1: Gap Junction Alpha 1 Protein
ICa

2+: Intracellular Calcium Current
IK1: Inward Rectifier Potassium Current
KCNJ2: Inwardly-Rectifying Channel, Subfamily J, Member 2
KCNN3: Potassium intermediate/small conductance calcium-activat-
ed channel subfamily N member 3
LOX: Lysyl Oxidase
MAPK: Mitogen-Activated Protein Kinase
miR or miRNA: MicroRNA
mRNA: Messenger RNA
NF-κB: Nuclear Factor-κB
PDCD4: Programmed Cell Death 4
PP2A: Protein Phosphatase
PTEN: Phosphatase and Tensin Homology
RAAS: Renin-Angiotensin-Aldosterone System
Rac1: Ras-Related C3 Botulinum Toxin Substrate 1
RISC: miRNA-Induced Silencing Complex
RNA: Ribonucleic Acid
RNase: Ribonuclease
RyR2: Ryanodine Receptor Type 2
SK3: Small-Conductance Calcium-Activated Potassium Channel 3
Spry1: Sprouty Homolog 1
TGF-β: Transforming growth factor-β
TGF-βRII: TGF-β Receptor Type II
THRAP1: Thyroid Hormone-Associated Protein 1
UTR: Untranslated Region

Introduction
	 Atrial fibrillation (AF) is the most common sustained  
arrhythmia which affects quality of life drastically [1]. The incidence 
of AF is 16.8% and 7.6% in men and women, respectively [2]. AF can 
cause and exacerbate heart failure. Also it is a significant risk factor 
for ischemic stroke [3,4] and therefore a major cause of cardiovascular  
morbidity and mortality [5]. Although a copious body of both 
basic and clinical research exists on AF, not all of the specific  
pathophysiological mechanisms of the generation, development and 
maintenance of AF are fully understood. Evidence shows that multiple 
factors are involved in the generation and development of AF. These 
factors include oxidative stress, systemic inflammation, autonomic 
imbalance, endocrine disorders, early electrical remodeling, such as 
shortened atrial effective refractory period (ERP) and action potential 
duration (APD) [6], and late mechanical remodeling, such as cardiac 
hypertrophy and myocardial fibrosis [7]. Recently a few studies have 
unveiled that miRNAs expression and/or deregulation can influence 
the generation, development and maintenance of AF. This review  
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Abstract
	 MicroRNAs (miRNAs) are a class of small non-coding RNAs, 
playing important roles in the regulation of the cardiovascular  
function. MiRNAs are associated with the generation, development, 
and maintenance of atrial fibrillation through the regulation of the 
gene expression on targets of ion channels, transporters, calcium 
binding proteins, extracellular matrix proteins, and other factors.  
Understanding the relationship between miRNAs and atrial  
fibrillation is critical to identifying the diagnostic markers, prognosis 
and therapeutic targets.
Keywords: MicroRNA; Atrial fibrillation; Gene regulation; Electrical 
remodeling; Structural remodeling
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focuses on the current understanding about the role and function of 
miRNAs in AF.

Biogenesis and Function of miRNAs
	 MiRNAs are highly conserved, non-coding endogenous and  
single-stranded RNAs, which bind to the 3’-untranslated regions 
(UTRs) of target mRNAs to regulate the expression of target genes [8]. 
MiRNA-mediated post transcriptional gene regulation involves the 
degradation of the target mRNA or the suppression of its translation 
depending upon the sequence complementarity between the miRNA 
seed-sequence and the 3’-UTR of the target mRNA. Partial binding 
between seed sequence and target mRNA results in the repression of 
translation, whereas extensive pairing complementarity leads to the 
degradation of target mRNA [9-11]. 

	 The multiple-to-multiple relationship between miRNAs and their 
targets is recognised [12]. In such relationships one miRNA can target 
several genes and similarly several miRNAs or a miRNA cluster can 
target one single gene. Generally, the biological processes of miRNA  
biogenesis include four steps. First, generation/transcription of  
primary transcript called primary-miRNA (pri-miRNA) is mediated  
by RNA Polymerase II in the nucleus [9], which is then  
polyadenylated and capped by 7-methylguanosine [13]. Second, the 
pri-miRNA is cleaved by Drosha, a ribonuclease (RNase) III enzyme, 
with its co-activator partner, DGCR8 (DiGeorge Syndrome Critical 
Region 8, a microprocessor complex unit) to form precursor miRNA 
(pre-miRNA) [14,15]. The third step involves the cytosol export of 
pre-miRNA by the protein Exportin 5/Ran-GTP complex [16] and 
further cleavage into a mature miRNA by Dicer, another RNase III 
enzyme [14]. In the fourth and the last step, the double-stranded  
mature miRNA is dissociated and incorporated into the  
miRNA-induced silencing complex (RISC) which then targets  
complementary mRNAs [15,17] (Figure 1). Typically, miRNA  
expression is time and tissue type-specific [18].

	 The nucleus primary-miRNAs (pri-miRNA) are transcribed from 
long miRNA genes mediated by RNA polymerase II and cleaved by 
the ribonuclease III (RNase III) endonuclease Drosha with its partner  
DGCR8 to turn into precursor-miRNAs (pre-miRNA), which then 
move from the nucleus to the cytoplasm where the cytoplasmic  
enzyme Dicer further cleaves the pre-miRNA into double-stranded  
mature miRNA. The mature miRNAs are incorporated into the  

RNA-induced silencing complex (RISC). A mature miRNA binds 
to its target mRNA at 3’-UTR, leading to mRNA degradation or  
transcriptional repression. 

	 MiRNAs are associated with many physiological processes:  
embryonic development, cell proliferation, differentiation, apoptosis, 
autophagy, and tissue or organ formation and remodeling. Especially  
in the heart, miRNAs play a vital role in angiogenesis, fibrosis,  
myocardial cells regeneration, and cardiac remodeling and therefore 
considered to be strong potential tools for the diagnosis and treatment 
of heart related diseases [9,19-21]. MiRNAs can affect cardiomyocyte  
excitability and conductivity by the regulation of ion channels  
permeability, transporters and associated regulatory proteins which 
can lead to different forms of arrhythmias [22]. The expression of 
miRNA spectrum in atrial tissue is significantly different in mitral  
stenosis patients with AF compared with healthy subjects [23]. 
AF alters the miRNA expression profiles of the left atria of mitral  
stenosis patients [24], suggesting that miRNA may be involved 
in the generation and development of AF. In fact, AF is a complex  
pathology, involving both primary electrical and structure factors. 
Different miRNA families are associated with different aspects of AF 
(Table1).

Role of miRNAs in the Generation and Regulation of 
AF
	 The mechanisms of AF are complex, but recent studies have shown 
that miRNAs contribute to the generation and regulation of AF in 
several ways (Figure 2). For example, miRNAs can induce cardiac  
immune/inflammatory response [38,39] and affect ion channels as 
well as structural and electrical remodeling including intracellular 
calcium overload [40]. These, in turn, can result in shortening of the 
action potential ERP and APD, which is conducive to the formation 
of reentry [4].

	 Two mechanisms generate and develop atrial fibrillation by  
making substrate more prone to reentry. MiR-1, miR-26, miR-328 and 
miR-499 regulate atrial electrical remodeling through the modulation 
of ion channel (IK1, Ica2+) activity and expression. MiR-19, miR-21, 
miR-29, miR-30, miR-133, miR-155, miR-208 and miR-590 result in 
the increase of collagen secretion and extracellular matrix deposition  
which leads to atrial structural remolding. IK1, inward rectifier  
potassium current. Ica2+, intracellular calcium current.

miR-29: Role in cardiac immune response

	 MiR-29 has a crucial role in the generation and development of 
AF. The down-regulation of miR-29 can induce the fibrosis of the  
liver [41] and lung [42] and can also cause aneurysms [43]. The risk 
of AF prevalence is increased by 30% with celiac disease [44]. Overall, 
inflammation and chronic inflammatory diseases, such as psoriasis,  
also increase the risk of AF [45]. Therefore, AF is partially  
moderated by the humoral and systemic inflammatory response  
induced by local fibrosis. The miR-29 family (miR-29a, miR-29b and 
miR-29c) is expressed in T and B cells, dendritic cells and thymic  
epithelial cells, which play a regulatory role in the adaptive immune  
pathway [46]. Multiple biopsy specimens in left atria with AF 
have shown lymphocytic myocarditis in 66% of patients and  
noninflammatory localized cardiomyopathy in 17% of patients [47]. 
In the canine model of AF, miR-29b was found to target collagen-1A1 
(COL1A1), collagen-3A1 (COL3A1) and fibrilin [30], which are the 
prime markers of tissue remodeling. Moreover, the serum level of 
miR-29b is reduced in patients with AF by 54%, strongly implicating  

Figure 1: Biogenesis and function of miRNA.
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its contribution towards this ailment. The pro-inflammatory factors 
like transforming growth factor-β (TGF-β) [48] and nuclear factor-κB 
(NF-κB) are reported to be the upstream regulators of miR-29 [49]. 

miR-26, miR-328 and miR-499: Role in regulation of ion 
channels

	 The miR-26 family (miR-26a-1, miR-26a-2 and miR-26b) can  
increase susceptibility to AF by altering the inward rectifier potassium  
current (IK1). IK1 is the major potassium current of myocardial  
repolarization, which partially regulate cell excitability and APD. The 
lower expression of miR-26 in patients with AF and murine atrial  
tissue induces KIR2.1 and KCNJ2 expression and shortens APD 
[29], suggesting that the downregulation of miRNA-26 promotes the  
formation of AF. MiR-26 activates T cell nuclear factor. An elevated 
T cell nuclear factor in atrial tissue, in turn, reduces the expression of 
miR-26, leading to the increase in inward rectifier current.

	 MiR-328 is involved in a variety of physiological and pathological  
processes of tissue organization, such as the formation of senile  
dementia [50], primary biliary cirrhosis [51] and chronic bladder 
pain syndrome [52]. AF is a characterized by abnormal excitability via 
myocardial calcium overload (e.g. the outflow rate of calcium ions), 
potentiating the development and maintenance of AF [53]. It has been 
reported that miR-328 plays an essential role in development of AF  

[54]. Through microarray analysis, a recent study has shown a 3.5 
fold increase in the miR-328 level in eight week samples from a right  
atrial tachyarrhythmia canine model compared with control. It 
has also been shown that overexpression of miR-328 increases the  
susceptibility of animals towards AF, whereas blocking its expression 
through chemicals or gene knockdown reduces it. In-silico analysis  
has revealed that calcium channel regulatory genes, such as  
CACNA1C and CACNB1 (L-type calcium channels α1c and β1  
subunit, respectively), are the targets of miR-328 [36].  
MiR-328-mediated inhibition of the L-type calcium channels results 
in shortening of the action potential duration enhancing the risk 
of AF development [55]. Furthermore, the expression of miR-328 
was found to have a positive correlation with left atrial diameter,  
suggesting that miR-328 plays a central role in atrial electrical activity.

	 Mir-499 has been recently shown to target KCNN3 which encodes  
the small-conductance Ca2+-activated K+ channel 3 (SK3) and  
potentially contribute to the electrical remodeling event in AF [37]. 

miR-1 and miR-133: Role in regulation of Ca2+ cycling

	 Mir-1 and miR-133 are two major muscle-specific miRNAs whose 
deregulation has been associated with the extrasystolic spontaneous 
Ca2+ release from sarcoplasmic reticulum and the generation of  
arrythmogenesis after depolarization [22,56]. Increased occurrence 
of spontaneous Ca2+ release at the molecular level was found to be 
due the dissociation of ryanodine receptors (RyR2s) with the protein 
phosphatase (PP2A) resulting in increased phosphorylation of RyR2s. 
In canine model of heart failure, high levels of miR-1 and miR-133 
were found to be correlated with the down regulation of the regulatory 
and catalytic subunits (B56α and B56β) of PP2A and the subsequent  
increase in calcium/calmodulin-dependent protein kinase II  
(CaMKII) mediated RyR2 hyperphosphorylation resulting in Ca2+  
release [57].

Role of miRNAs in the Maintenance of AF
	 AF is maintained by a variety of factors. For example, local  
atrial structural remodeling (atrial dilatation, tissue fibrosis and  
scarring etc.) contributes to the formation of reentry substrate  
resulting in the abnormalities of the atrial internal electrical  
conduction. The miRNA-mediated regulation of the connective  
tissue growth factor (CTGF), lysyl oxidase (LOX) and  

miRNA Target Function Possible role in AF Reference

miR-1 KCNJ2 GJA1 RyR2 Abnormal Ca2+ handling Atrial electrical remodeling [25]

miR-19 CTGF Extracellular matrix, myocardial fibrosis Atrial structural remodeling [26]

miR-21 PDCD4
PTEN MMP-2 expression increase, extracellular matrix, myocardial fibrosis Atrial structural remodeling [27,28]

miR-26 KCNJ2 IK1 increase Atrial electrical remodeling [29]

miR-29 COL1A1 COL3A1 Collagen secretion, inflammation Atrial structural remodeling [30]

miR-30 Ang II Myocardial hypertrophy Atrial structural remodeling [31]

miR-133 ERK1/2 TGF- β1 TGF-βRII Myoblast proliferation, myogenesis Atrial structural remodeling [32,33]

miR-155 AT1-R Endothelial dysfunction, vascular remodeling, inflammation Atrial structural remodeling [34]

miR-208 THRAP1 myostatin Myocardial hypertrophy Atrial structural remodeling [35]

miR-328 CACNA1C CACNB1 Ica2+ reduction Atrial electrical remodeling [36]

miR-499 KCNN3 Abnormal Ca2+ handling Atrial electrical remodeling [37]

miR-590 TGF- β1 TGF-βRII Collagen content increase Atrial structural remodeling [33]

Table 1: Different miRNAs with potential roles in atrial fibrillation.

Atrial fibrillation (AF) is characterized by atrial electrical remodeling and structural remodeling.

Figure 2: MiRNAs associated with atrial fibrillation.
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renin-angiotensin-aldosterone system (RAAS) results in atrial  
collagen deposition and fibrosis, leading to the maintenance of AF 
[58].

miR-21 and miR-590: Role in collagen deposition
	 MiR-21 is involved in a variety of cancers and participates in tumor  
cell apoptosis, invasion and metastasis [59]. In the cardiovascular  
system, however, miR-21 leads to atrial fibrosis and structural  
remodeling and increases the risk and duration of AF [60]. MiR-21 
has shown to increase the risk of AF. The phosphatase and tensin 
homolog gene (PTEN) has been identified as a miR-21 target gene. 
The PTEN-Akt pathway participates in extracellular matrix (ECM) 
remodeling in atria through MMP2 regulation which leads to atrial 
fibrosis [27,28]. A recent study has identified another target of miR-21 
called sprouty homolog 1 (Spry1) jointly involved in the regulation of  
atrial fibrosis [58]. The lower Spry1 level activates the  
mitogen-activated protein kinase (MAPK) signaling pathway,  
increases the number of fibers, and promotes the secretion of growth 
factors, leading to myocardial fibrosis and tissue remodeling [61,62]. 
Angiotensin II (Ang II)-induced factors, such as Ras-related C3  
botulinum toxin substrate 1 (Rac1), CTGF and LOX, decrease the  
level of miR-21 resulting in increased Spry1 level in atrial tissue which 
affects electrical conduction and atrial structure remodeling [26,58]. 
In mice with increasing age, transgenic cardiac overexpression of Rac1 
results in spontaneous AF and fibrosis. However, the inhibition of the 
expression of miR-21 can effectively prevent atrial fibrosis, reducing 
associated risk factors for AF.

	 MiR-590 has recently been correlated with AF due to its role in 
reducing collagen production and deposition, which is a significant 
source of atrial fibrosis. In nicotine induced canine models, collagen 
content was found to be significantly increased, coincident with an 
increase in TGF-β/TGF-βRII and a decrease in miR-590 levels [33].

miR-155 and miR-19: Role in activation of renin- 
angiotensin-aldosterone system
	 MiR-155 can target the 3’-mRNA of Ang II type 1 receptor (AT1-R) 
and inhibit AT1-R activation. Endothelial dysfunction, vascular  
remodeling, and inflammation are prevented by miR-155, which slows 
down the changes in cardiac structure and reduces the progression of 
AF [34]. MiR-155 levels in atrial tissue may be reduced in patients 
with AF, causing AT1-R activation, and in turn leading to a series of 
changes in cardiac structure and myocardial tension.

	 It has been shown that in the newborn mouse cardiomyocyte, the 
high level of miR-19b significantly reduces Ang II-induced CTGF 
expression, decreases the accumulation of atrial ECM, and prevents 
atrial fibrosis [26]. 

miR-133 and miR-590: Role in regulation of myogenesis and 
atrial remodeling
	 MiR-133 (miR-133a and miR-133b) is involved in myoblast  
proliferation and differentiation. Through the next generation  
sequencing (Solexa), both miR133a and miR-133b were found to 
be upregulated during myogenesis. In C2C12 myoblasts, miR-133a 
and miR-133b were found to inhibit proliferation and promote  
differentiation by regulating ERK1/2 phosphorylation. Fibroblast 
growth factor 1 (FGF1) and PP2Ac (PP2Aca and PP2Acb) are  
reported to be the potential targets of miR-133a/b [32]. Several studies 
have reported that the down-regulation of miR-133 was observed in 
chronic cases of AF [33,63]. Corresponding study of the upregulation  

of TGF-β and TGF-βRII in canine model of AF confirms that TGF-β 
and TGF-βRII are miR-133 targets in atrial fibroblasts [33].

miR-30 and miR-208: Role in myocardial hypertrophy/ 
atrial fibrosis

	 Atrial fibrosis is characterized by the structural alteration and  
hypertrophy of cardiac myocytes. Recently dysregulated autophagy 
has been implicated as a leading cause of myocardial hypertrophy. 
In the rat model of cardiac hypertrophy, a group has reported the  
upregulation of an autophagy related gene beclin-1 and a  
corresponding decrease in the expression of miR-30 in cardiac tissue 
[31]. Moreover CTGF, a key pro-fibrotic protein, was also found to be 
a target of miR-30 in rodent model of heart disease [64], implicating a 
negative regulatory role of miR-30 in the maintenance of AF.

	 MiR-208 is mainly expressed in cardiac tissue and this family  
consists of miR-208a and miR-208b encoded by the intron of a cardiac  
muscle myosin heavy chain gene (Myh6) and β-cardiac muscle  
myosin heavy chain gene (Myh7), respectively [65]. Thyroid  
hormone-associated protein 1 (THRAP1) and myostatin, both 
of which are negative regulators of muscle hypertrophy, are  
reported targets of miR-208 family. Transgenic expression of miR-208 
in murine heart has proven hypertrophic to the cardiac tissue due to 
decreased expression of THRAP1 and myostatin and is sufficient to 
induce arrhythmias [35].

Summary and Perspective: miRNA in AF

	 AF is a common clinical arrhythmia, but the mechanisms are 
not yet fully understood. MiRNAs assist in regulation, generation,  
development and maintenance of AF via modulations in ion channels,  
receptors and extracellular matrix proteins. Some miRNAs  
implicated in AF have potential for use as biomarkers and drug  
targets [66]. For example, serum miR-21 and miR-29 can be used as a 
noninvasive method for detecting AF and inhibition of miR-21 may 
prevent myocardial fibrosis to reduce the risk of AF. However, our  
current knowledge about miRNA and its contribution towards AF is 
still limited and therefore, learning more about miRNAs will provide  
new insights into their mechanisms of action and help us in  
determining effective treatment targets [67]. Data from different  
studies show that some miRNAs are causative while others have  
protective effect for AF depending upon their targets. For example, 
some are pro-fibrotic while others are anti-fibrotic. Similarly, some are 
pro-arrythmatic whereas others are anti-arrythmatic. Nevertheless,  
we can identify the deregulated ones to be associated with the  
disease development and/or maintainance and use them as  
biomarkers, at least, for that ailment. Future research in this direction 
is needed, including gathering of larger data sets from animal models  
and in-depth analysis of the role of miRNAs in the pathogenesis of 
AF. The definitive function of a particular miRNA can however be  
evaluated by the knockdown studies, after which the therapeutic  
potential could be assessed. The functional analysis through miRNA 
overexpression and their knockdown through anti-miRNA oligos  
can provide insight about their role in the pathogenesis and/or  
maintenance of a particular disease. This will help in the development 
of clinical trials to test miRNA-based therapeutic drugs. In case of 
AF there is substantial evidence regarding the role of miRNAs in the  
development and maintenance of the disease. Thus, the beneficial  
effect of using miRNA for AF seems to hold a lot of promise for future 
treatments and therapies.
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