
Introduction
	 Speech evidence elicited from mobile phone recordings can play 
an important role in criminal trials. But these recordings are often  
corrupted by large amounts of Background Noise (BN) picked up by 
the sending-end microphone during a call. The extent to which this 
might impact upon the subsequent processing of the speech signal 
varies from one mobile phone network to another. There are currently 
two major technologies in the mobile phone arena, namely the Global  
System for Mobile Communication (GSM) and Code Division  
Multiple Access (CDMA). These are different in their design and in 
their ways of handling such noise-corrupted speech. One of the key 
differences between the GSM and CDMA network is in respect to a 
process called Noise Suppression (NS), which is only present in the 
CDMA network.
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	 NS is used in the CDMA network for two purposes: (i) to reduce 
the BN in each speech frame, and (ii) to improve the subsequent  
classification of speech frames into voiced, voiceless (often referred to 
as unvoiced) and silence, this being necessary for the coding process 
used by this network [1]. Despite the success of NS in reducing noise, 
it has been reported to remove part of the original speech when the 
BN levels are high, such as would be the case when a call originates  
from a moving vehicle [2]. The primary goal of this paper is to  
investigate the impact of BN in the mobile phone arena on the strength 
of speech evidence arising from a Forensic Voice Comparison (FVC) 
analysis. Mobile network operators, when testing the performance of 
their codecs under various noise conditions, typically use three types 
of noise: babble noise (i.e., confused sound or perhaps background 
speech of a group of people talking simultaneously), car and street 
noise. Typical SNR levels at the transmitting end employed in these 
tests vary from 9 to 21 dB [3]. These same noise types and SNR levels 
have therefore been used in our experiments.

	 Two approaches can be used to investigate the impact of BN 
in a mobile phone network on the speech signal [4]. The most  
straightforward approach is to generate artificial BN near the caller 
and then transmit the resulting noise-corrupted speech across an  
actual mobile phone network. This approach, however, cannot be 
used to examine the impact of BN in isolation to other factors that 
can impact on the speech signal during transmission, such as dynamic  
rate coding (where the coding bit rate changes in response to  
changing channel conditions) and frame loss (where speech frames 
are lost during transmission). Further, this approach can only  
encompass a small subset of the actual transmission scenarios. 
Even then, there would be no way of knowing the specific channel  
conditions present during a call as this information is not available  
in the received speech signal. An alternative strategy is to add  
different types of BN to the speech signal and then pass the result in a 
controlled manner through a software implementation of the mobile 
phone speech codec. We view this as a much better approach and was 
thus used in our experiments. The rationale for this approach is that 
in a mobile phone network the speech codec is the only component 
responsible for changes that might occur to the speech signal during 
transmission [5,6]. These codecs have many modes of operation 
which get selected dynamically in response to events happening in 
the network as a whole or in response to changing speech characteris-
tics. The most widely used speech codecs are the Adaptive Multi Rate 
(AMR) codec used in the GSM network and the Enhanced Variable 
Rate Codec (EVRC) used in the CDMA network.

	 The Likelihood Ratio (LR) framework has been used in this study 
for evaluating the strength of speech evidence. Different probabilis-
tic models can be used to calculate a LR, such as Multivariate Kernel  
Density (MVKD) [7], Principle Component Analysis Kernel  
Likelihood Ratio (PCAKLR) [8], and Gaussian Mixture Mod-
el-Universal Background Model (GMM-UBM) [9]. The first two are  
primarily designed for token-based analysis (e.g., when isolated 
speech components such as vowel segments are analysed), while 
the latter is typically used for data-stream-based analysis when a 
large amount of speech data is available. These models comprise two  
major terms: similarity and typicality. The former quantifies the  
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Abstract
	 This paper examines the impact of Background Noise (BN)  
originating at the transmitting end of a mobile phone transmission 
on the subsequent performance of a forensic voice comparison  
analysis. The investigation covers the two major mobile phone  
technologies currently in use globally, namely the Global System for 
Mobile Communications (GSM) and Code Division Multiple Access 
(CDMA). It is shown that both networks handle BN in a different 
way, and for both, BN negatively impacts the accuracy of a FVC  
analysis. At low levels of BN, this impact is small for both networks.  
As expected, it increases as the level of BN increases, but  
surprisingly is worse for CDMA-coded speech, this being attributed 
to that network’s unique noise suppression process. As far as the 
precision of a FVC analysis is concerned, interestingly this is shown 
to improve with increasing BN irrespective of the network origin.
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amount of similarity between suspect and offender speech samples; 
the latter their typicality to a relevant background population.

	 PCAKLR was chosen in our experiments for a number of reasons: 
(i) it has the ability to handle a large number of speech parameters, 
(ii) it does not require large amounts of data for training, and (iii) it 
suits the token-based experiments used in this study. With PCAKLR  
a set of input speech parameters is transformed into a new set of 
highly uncorrelated parameters using Principal Component Analysis 
(PCA). LR values are then calculated from the resultant orthogonal  
parameters using univariate kernel density analysis and their product 
taken to produce an overall LR based on the naïve Bayesian approach.

	 Mel-Frequency Cepstral Coefficients (MFCCs) have been chosen 
for the comparison process in our experiments. MFCCs are known to 
be sensitive to transmission artefacts in landline networks, and several  
compensation techniques have been proposed to account for this  
[10-12]. Even though transmission errors and artefacts may also be 
present in mobile phone networks, the manner in which they impact  
on the speech signal is completely different. In mobile phone  
transmission the speech data is segmented and transmitted in frames. 
When a frame gets lost or corrupted during transmission, an error 
detection/correction mechanism is used at the receiving end to detect 
these errors and correct them. If this process fails, the speech codec  
inserts a new, artificially generated, frame using information from 
previous good speech frames [13,14]. Therefore, partially corrupted  
speech frames arising as a result of, for example, poor channel  
conditions or channel noise, never arrive at the receiving end. Put 
simply, channel noise cannot impact the transmitted speech signal 
directly, but rather indirectly as a result of these inserted artificial-
ly-generated ‘clean speech’ frames. The same is not true, however, for 
BN introduced at the transmitting end.

	 The remainder of this paper is structured as follows. First 
the  mechanisms used in mobile phone networks to mitigate the  
impact of BN are discussed. This is followed by a brief overview of 
the likelihood ratio framework and the tools used in this paper  
for assessing the performance of a FVC analysis. These are: the  
Log-likelihood-ratio Cost Cllr, Tippett plot, Applied Probability Error  
plot (APE) and Credible Interval (CI). Next we discuss the  
experimental methodology used for both the GSM and CDMA  
networks to understand their respective impacts on FVC when BN 
is present. This is followed by results, findings and then conclusions.

Background Information
Mitigating the impact of BN in mobile phone networks

	 Unlike the NS process implemented in the CDMA network, the 
GSM network incorporates no specific mechanism for mitigating the 
impact of BN arising at the transmitting end. For both networks this 
negative impact is likely to worsen as the separation distance between 
the mobile phone microphone and the speaker increases, such as 
would be the case for hands-free terminals.

	 The NS process attempts to remove BN in every 20 ms speech 
frame in order to accurately classify it into voiced, unvoiced or  
transient prior to the coding stage [15,16]. It is preceded by a high 
pass filter having a 3 dB cut-off frequency of about 120 Hz and a slope 
of about 80 dB/octave, the goal being to remove at the outset any 
low frequency BN outside of the speech frequency band critical for  
intelligibility. Each speech frame is then segmented into two 10 ms sub 
frames and the NS process applied separately to each. This uses a set  

of energy estimators and voice metrics to determine characteristics 
of the noise signal in a sub frame and thus assist in its subsequent 
removal [1,17]. It is implemented as follows. A sub frame is first  
windowed using a smoothed trapezoidal window and then  
transformed into the frequency domain using a 128-point Fast Fourier 
Transform (FFT). The resultant 128 frequency bins are then grouped 
into 16 bands (or channels) which approximate the ear’s critical bands. 
The energy present in each critical band is referred to as channel  
energy and estimated by averaging the magnitude of all frequency 
bins within that band. The noise energy is estimated in a similar way, 
but from pauses that naturally occur in human speech. This is then 
combined with the channel energy to determine the Signal-to-Noise 
Ratio (SNR) of that sub frame. This SNR is used as a voice metric to  
determine if the current sub frame contains active speech or only 
noise.

Likelihood-Ratio (LR)
	 The use of the LR for evaluating the speech forensic evidence is  
increasingly gaining acceptance among forensic scientists [18-22]. 
The LR framework provides a quantitative answer to the question: 
How much more likely is it to observe the properties of the offender  
and suspect speech samples assuming they have the same origin  
(prosecution hypothesis) than a different origin (defence hypothesis). 
Mathematically this can be expressed as:

where ( )pp E H  and ( )dp E H  are the conditional probabilities  
of the evidence given the prosecution and defence hypotheses,  
respectively. Log Likelihood-Ratios (LLRs) are often calculated 
from LRs, where 10logLLR LR= . A large positive LLR supports the  
prosecution hypothesis, a large negative one the defence.

Tools for estimating the performance of a FVC
Log-likelihood-ratio cost (Cllr) as a measure of validity/accuracy: 
The accuracy of our experiments was measured using Cllr. This metric 
requires a prior knowledge of the origin of a particular comparison. 
It penalizes the experimental results of same- and different-speaker 
comparisons that deviate from the actual output and thus provides a 
measure of accuracy for the system used. Mathematically, Cllr can be 
expressed as [20-24].

where

,so doN N →  Number of same- and different-speaker comparisons, 
respectively;

,so doLR LR →  LRs determined for same- and different-speaker ori-
gins, respectively.

	 Low Cllr values indicate that a FVC analysis system is providing 
some useful information (the lower the value, the more accurate the 
analysis, and vice versa).

Tippett plot: LLR results can be represented graphically using  
Tippett plots [23,25]. A Tippett plot represents the cumulative  
proportion of same- or different-speaker comparisons corresponding  
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to a certain LLR value. Since large positive LLRs favour the same-speak-
er hypothesis and large negative values the different-speaker  
hypothesis, the further apart the curves (same-speaker curve towards 
the right and different-speaker towards the left), the better the results.

Applied Probability of Error (APE) plot: An APE plot comprises  
a number of APE curves and bar graphs and can be used to tease 
out information about the losses in a FVC system [26,27]. The APE 
curve shows the error-rate plotted against logit prior, where the bar 
graphs represent the area under each of the APE curves. An ideal FVC  
system would have zero loss (i.e., Cllr =0), but in reality every system 
will have losses. The loss in Cllr is typically divided into discrimination  
loss (Cllr,min) and calibration loss (Cllr,cal). Cllr,min corresponds to the  
lowest  Cllr that can be achieved while preserving the discrimination 
power of the system. This corresponds to the area under the green 
APE curve which is also equal to the height of the green bar. Cllr,cal can 
be obtained by subtracting Cllr,min from Cllr and corresponds to the area 
between the red and green APE curves. It is equal to height of the red 
bar. The combined height of the green and red bars gives the actual 
Cllr of the system.

Credible Interval (CI) as a measure of reliability/precision: The 
use of Credible Interval (CI) as a measure of reliability/precision is  
gaining popularity in FVC [23,28,29]. CI helps to answer the question:  
how much variability in estimating the strength of evidence is  
expected due to variability in the measurement of speech parameters, 
if the comparison process is repeated several times under different 
conditions (for e.g., using different recording sessions). Once the CI 
is estimated, one can be confident that the true value of the LR lies  
within the 95% of this interval. Two approaches can be used to  
calculate CI: parametric (for homoscedastic distributed LRs) and 
non-parametric (for heteroscedastic distributed LRs). Since the  
output of PCAKLR is heteroscedastically distributed, the non-para-
metric CI calculation has been used in our experiments for calculating 
precision.

Methodology
Speech database and speech parameters

	 The XM2VTS database [30], which contains speech recordings of 
295 speakers, has been used in our experiments. Only the 156 male 
speakers in this database were considered. Following the rationale 
mentioned in [31], a number of those speakers (26) were discarded at 
the outset because their recordings sounded less audible and/or they 
appeared to have a quite different accent to the other speakers.

	 Speakers in this database were recorded on four separate occasions 
separated by one month intervals. During each recording session, 
each subject repeated three ‘sentences’ twice. The first two of these 
comprised a sequence of random digits, as follows: “zero one two 
three four five six seven eight nine” and “five zero six nine two eight 
one three seven four”. The last sentence was a phonetically balanced 
sentence: “Joe took father’s green shoe bench out”. The speech files are 
sampled at 32 kHz and digitized into 16 bits. The vowel segments /aI/, 
/eI/ and /i/ have then been extracted from the words “nine”, “eight” 
and “three”, respectively. The realization of different phonemes was 
manually located in the speech files using a combination of auditory 
and acoustic analysis. Audio editing programs, such as Goldwave [32] 
and Wave surfer [33], were used to assist in this process. Even though 
the database contains four different recording sessions, only three 
of them were used here. In summary, four tokens of three different  
 

vowels (two diphthongs and one monophthong) from three  
non-contemporaneous recordings were used in the following FVC 
experiments.

	 All speech samples were down-sampled to 8 kHz and stored into 
16 bit PCM wav files to align with the input speech requirements of 
mobile phone speech codecs. Different types of noise at different SNR 
levels were added to the speech samples and these then coded under 
certain modes of operation in both the GSM and CDMA networks. 
MFCCs were then extracted from the vowel segments as follows. A 
Hamming window was applied to the whole vowel segment to remove 
edge effects, followed by taking its Discrete Fourier Transform (DFT). 
A set of 23 Mel-filter banks were then applied to the speech signal 
in the frequency domain. The average energy was estimated in each 
frequency band, followed by taking its logarithm. A Discrete Cosine 
Transform (DCT) was then applied, resulting in a total of 23 MFCCs 
{ }1 2 23, ,...c c c  [34].

	 The 130 speakers chosen for this experiment were divided as  
follows: 44 speakers for the Background set, 43 speakers for the  
Development set and 43 speakers for the Testing set. Two same-speak-
er comparisons were obtained for each speaker in the Testing set by 
comparing their tokens from Session 1 with their tokens from Sessions 
2 and 3. Similarly, three different-speaker comparisons were obtained 
for each speaker by comparing their tokens from Session 1 with all 
other speakers’ tokens from Sessions 1, 2 and 3. The Background set 
remained the same across all comparisons and included tokens from 
two recording sessions for each of the 44 Background speakers. The 
sole purpose of the Development set is to train the fusion system, the 
resulting weights of which are used to combine LRs calculated from 
individual vowels for every comparison in the testing set [35].

	 The mean values for each two same-speaker and three  
different-speaker LLRs were calculated and then a Cllr value was  
calculated from those means. This will be referred to in this paper 
as Mean Cllr. The CI was calculated by finding the variation in each 
LR calculation (i.e., variation between two same-speaker and three  
different-speaker comparisons) using the non-parametric approach 
and then taking their average.

Experimental procedure
	 The block diagram in figure 1 shows our experimental  
procedure. This involves a comparison in terms of Cllr and CI between  
two FVC analyses for each network. The first used clean speech  
processed by the codec under specific modes of operation. The second  
used speech that had been corrupted with different types of BN at  
different SNRs and then coded using the same modes of operation as 
for the clean speech.

	 The three types of BN used in our experiments (car, babble, and 
street noise) were acquired from the Soundjay database [36]. Each of 
these was added to the speech files at three SNRs: 9, 15, and 21 dB,  
according to [37]. To reflect more realistic scenarios in these  
experiments, different sections of noise were added to the speech  
samples. Only matched conditions have been considered here, where 
the Background set contained coded speech at the same specific mode 
being investigated, but without BN. The rationale with this was to 
investigate the impact of BN in isolation to other factors that might 
likely cloud the results.

	 Given that the speech codecs used in the GSM and CDMA  
networks are different in their operational modes, the kinds of  
experiments required to encompass the totality of all possible  
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transmission scenarios for each network are necessarily different. In 
the GSM network the AMR codec uses a speech coding technique 
called Code-Excited Linear Prediction (CELP). It can operate at one 
of eight source coding bit rates: 4.75, 5.15, 5.90, 6.70, 7.40, 7.95, 10.20 
and 12.20 kbps [38]. Though the AMR codec can switch between bit 
rates every 40 ms [39], only the median bit rate, namely 7.95 kbps, has 
been used in our experiments. The rationale for this is that a bit rate 
of 7.95 kbps is likely to be used in the GSM network when channel  
conditions are average (i.e., neither too good nor too poor). The  
Background set was also coded at 7.95 kbps using clean speech.

	 In the CDMA network the EVRC codec can operate at three  
different modes of operation, called Anchor Operating Points (AOPs): 
OP0, OP1 and OP2, which are designed to change the speech coding 
bit rate in accordance with different channel and capacity conditions 
present in the network, producing high-, medium- and low-quality 
speech, respectively. Two sets of experiments have been conducted 
using CDMA-quality speech. The first used clean speech processed 
by the codec at modes OP0 and OP2. For the second, different kinds 
of BN, at various SNR levels, were added prior to processing them at 
either OP0 or OP2.

	 The rationale for conducting FVC experiments at two different 
AOPs is that OP0 incorporates a different set of coding algorithms 
to either OP1 or OP2. These latter two use a combination of Pitch  
Period Prototype (PPP) and CELP for coding vowels, whereas OP0 
uses only CELP. The PPP algorithm exploits the fact that pitch  
patterns do not dramatically change from one frame to another. 
Thus, rather than transmitting pitch information for every speech 
frame, information from previous frames is used, while resolving any  

discontinues arising from phase misalignment [4,40]. As will be  
discussed in the next section, this repetition of pitch patterns can 
mask the effect of NS, which in turn improves the comparison  
results when low-quality speech coding is used, as would be the 
case for mode OP2. OP1 has not been investigated here because it  
essentially uses the same coding processes as OP2.

Results and Discussion
Impact of the EVRC’s NS Process on the speech time  
waveform
	 In order to first examine how the EVRC coding algorithm,  
together with NS, might impact upon the time waveform of a speech 
signal, an experiment was conducted for a token of the word ‘eight’, 
results of which are shown in figure 2. Figure 2(a) shows the time 
waveform of the original speech segment. Figure 2(b) shows the same 
speech segment, but with street noise added at SNR = 6 dB. The noisy 
speech has then been coded at OP0 and OP2 (Figures 2(c) and (d), 
respectively). The coding pattern in the EVRC for a sequence of three 
voiced frames is PPP, PPP and CELP for OP2, whereas it is always 
CELP for OP0 (see [41] for further details about the coding patterns 
used in the EVRC).

	 Examination of Figure 2 reveals that the EVRC has done a good 
job in reducing BN despite the high levels of added noise. However, 
speech signal characteristics have changed slightly as a result of the  
NS process. In the case of OP0 (Figure 2(c)) a large part of the  
original speech in Frame 3, together with the BN originally present 
there, have been removed. Interestingly, this was not the case for OP2, 
where Frame 3 remained intact after NS. Though this might cause  

Figure 1: Block diagram of the experimental setup.
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some surprise, given that OP2 is expected to produce lower speech 
quality than OP0, it arises as a result of the use of PPP in OP1 and 
OP2, which exploits the fact that pitch contours do not significant-
ly change over two or more consecutive frames. In light of this, one 
might expect a poorer performance of FVC when using high-quality 
coded speech (i.e., OP0) in the presence of high BN levels (i.e., low 
SNRs).

Impact of BN in the GSM network

	 Table 1 shows the performance of a FVC analysis in the GSM  
network using speech corrupted with the three types of BN at various 
SNRs. Also shown in the table are the corresponding results for clean  
coded speech. These results are shown graphically in figure 3. In  
respect to the reliability of the results (i.e., CI), the difference between 
clean coded speech and noise corrupted speech is generally small and 
the trends are less clear. At low SNR the impact of babble noise on CI 
is slightly larger than that of either car or street noise. However, with 
increasing SNR the previous trend changes, with street noise being 
relatively worse than others. Speech files corrupted with babble and 
car noise at high SNR have resulted in a better CI compared to the 
clean coded speech. However, overall the difference in CI between 
noisy and clean speech is rather small and no conclusive remarks can 
be made.

	 It is clear from figure 3 that the accuracy of the FVC results  
generally gets worse in the presence of noise. The accuracy is worse 
when SNR is low across all three types of BN, with babble noise being 
the worst in this respect. Car noise tends to have almost no impact on 
accuracy at high SNR levels. Further, it can be seen from figure 3 that 
for a particular SNR level, different types of noise have resulted in a 
relatively similar accuracy for low SNR.

	 Some insight into why the accuracy gets worse in the presence of 
background noise in the GSM network can be gained by comparing 
the Tippett plot of figure 4 for clean-coded speech with that of figure 
5 for speech corrupted with babble noise at 9dB SNR. The solid blue 
curve in this figure represents the same-speaker comparison results 
and the solid red curve the different-speaker comparisons. The dashed  
lines shown on the either side of the solid blue and red curves  
represent the variation found in a particular LR comparison result 
(i.e., LLR CI± ).

	 It is evident from these Tippett plots that the proportion of  
same- and different-speaker classifications which are contrary to fact 
is slightly higher for noisy speech and this in turn negatively impacts 
the FVC accuracy. This trend is consistent across the other noise types 
as well with varying proportions of contrary-to-fact LRs. To further 
examine the losses in

 
Cllr, APE plots for the babble noise case are 

shown in figure 6.

Figure 2: The impact of NS under different anchor operating points on a  
token of the word ‘eight’. The vertical dotted lines indicate frame boundaries. 
(a) Clean speech, (b) Clean speech with street noise added as SNR=6 dB, 
(c) Noisy speech coded using OP0, and (d) Noisy speech coded using OP2.

AMR Mode: 7.95 kbps

Noise Type SNR Mean Cllr CI

Car

21dB 0.128 1.538

15dB 0.146 1.591

9dB 0.184 1.688

Babble

21dB 0.145 1.576

15dB 0.162 1.587

9dB 0.193 1.801

Street

21dB 0.153 1.691

15dB 0.160 1.616

9dB 0.180 1.542

No Noise 0.128 1.620

Table1: Performance of FVC analysis in the GSM network with speech coded 
at 7.95 kbps using various types and levels of BN.

Figure 3: Mean Cllr vs CI in the GSM network for speech coded at 7.95 kbps 
with different types of noise added at different SNR levels.

Figure 4: Tippett plot showing the FVC performance using clean speech  
coded at 7.95kbps in the GSM network.
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	 Firstly, in all cases including clean-coded speech, the
 

Cllr is  
dominated by discrimination loss Cllr,min. This Cllr,min is worse at lower 
SNR, which is an expected trend (i.e., speech parameters lose their 
discrimination power in the presence of large amounts of noise). In 
respect to calibration loss, differences between clean and noisy speech 
are very small, though the former has a slightly worse performance 
than the latter, especially at high SNR. The same trend is observed for 
the discrimination and calibration losses for the other types of noise 
as well.

Impact of BN in the CDMA network
	 Table 2 examines the impact of the EVRC codec on FVC  
performance for OP0 and OP2 under various BN conditions.  
Graphical presentations of these results are shown in figures 7 and 
8 for OP0 and OP2, respectively. For all experiments the addition 
of BN negatively impacts upon the FVC accuracy. This is worse for 
high-quality speech coding at low SNR levels. This is because the task 
of distinguishing BN from speech then becomes difficult for the NS 
process and this also results in the removal of parts of the original 
speech signal. However, the use of PPP coding in OP2 can somewhat 
mask this by repeating the pitch pattern of previous frames that might  

be less distorted. In contrast, at SNR levels around 21 dB, no signifi-
cant differences are observed between OP0 and OP2 in terms of both 
Cllr and CI. This is because the process of NS is expected to function 
more effectively under such SNR levels. The CI for both speech coding 
qualities improved for most of the BN experiments compared to the 
clean-coded speech experiments. This is an unexpected result and it is 
not clear at this stage why this is happening.

	 With respect to differences between the two coding qualities, a 
negative correlation between the CI and Cllr values has been observed 
when BN levels are high (i.e., with SNRs 15dB or below). In this 
case, the CI increases and Cllr decreases for the lower coding quality  

Figure 5: Tippett plot showing the FVC performance using speech in the GSM 
network corrupted by babble noise at 9 dB SNR and coded at 7.95 kbps.

Figure 6: APE plot showing the FVC performance using speech in the GSM 
network corrupted by babble noise added at various SNR levels and coded 
at 7.95 kbps.

EVRC Mode: OP0 OP2

Noise Type SNR Mean Cllr CI Mean Cllr CI

Car

21dB 0.149 1.655 0.146 1.608

15dB 0.152 1.585 0.152 1.616

9dB 0.185 1.537 0.172 1.793

Babble

21dB 0.144 1.686 0.143 1.914

15dB 0.146 2.262 0.128 2.071

9dB 0.265 1.503 0.190 2.306

Street

21dB 0.143 1.792 0.165 1.914

15dB 0.169 1.645 0.167 1.714

9dB 0.247 1.658 0.209 1.825

No Noise 0.117 1.891 0.116 1.953

Table 2: FVC Performance in the CDMA network using speech coded at OP0 
and OP2 under various BN conditions.

Figure 7: Mean Cllr vs CI for speech in the CDMA network coded at OP0 with 
different types of noise added at different SNR levels.

Figure 8: Mean Cllr vs CI for speech in the CDMA network coded at OP2 with 
different types of noise added at different SNR levels.
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as compared to the higher coding quality. It should not be inferred 
from this, though, that the accuracy improves as the SNR decreases 
for low-quality coding (i.e., OP2), but rather that the accuracy for OP2 
is better than OP0 at high BN levels. We conjecture that this behaviour 
is linked to the coding pattern for sequential frames used in OP2.  
Specifically, this coding pattern, together with high levels of BN, is 
likely to introduce slightly more variation between the speech samples 
of all speakers and thus increase between-session variations. This is 
evident in the elevated CI values of the OP2 results at low SNRs. In 
the case of OP0, the NS process subtracts BN from every speech frame 
without a mechanism, such as PPP, to mitigate this effect. This can 
result in samples that are more similar, but highly distorted, which 
affects the measurement of the speech parameters of interest. As a  
result, better CI and worse Cllr can be observed in this case. The  
situation reverses for these two coding qualities when BN levels are 
low (i.e., with SNRs above 15dB in this case), where the Cllr 

and CI 
values are better for OP0 than OP2, which is an expected behaviour. 
Again, this is a result of the NS process being able to function more 
effectively at higher SNRs.

	 In order to examine the BN impact with respect to the same- and 
different- speaker comparisons, Tippett plots have also been produced 
for all the experiments for babble noise. Tippett plots for the other 
types of BN have not been shown here as they are very similar to those 
for babble noise.

	 Figures 9 and 10 show Tippett plots for the FVC results using clean 
speech coded with OP0 and OP2, respectively. Figures 11 and 12 show 
the corresponding results for OP0 and OP2, respectively, for the case 
of babble noise at 9dB SNR. In the case of high BN levels, the addition  
of BN causes a significant increase in the proportion of both  
same- and different-speaker misclassifications and we conjecture 
that these are worse for high-quality speech coding for the reasons  
previously mentioned. As the SNR increases, it appears that only  
different-speaker comparisons are negatively impacted. The degree of 
this impact was almost the same for both coding qualities.

	 In order to analyze the losses in Cllr, APE plots were produced for 
the babble noise experiments. Again these were found to be typical of 
the other types of noise and therefore their APE plots are not shown 
here. The APE plots in figures 13 and 14 correspond to the OP0 and 
OP2 experiments, respectively, using speech files corrupted with  

babble noise at various SNR levels. Analysis of these plots reveals 
that the degradation in Cllr is mainly attributable to a decrease in the  

Figure 9: Tippett plot showing the FVC performance using clean speech in 
the CDMA network coded at OP0.

Figure 10: Tippett plot showing FVC performance using clean speech in the 
CDMA network coded at OP2.

Figure 11: Tippett plot showing the FVC performance using speech in the 
CDMA network corrupted by babble noise at 9dB SNR and coded at OP0.

Figure 12: Tippett plot showing the FVC performance using speech in the 
CDMA network corrupted by babble noise at 9dB SNR and coded at OP2.
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discrimination performance of the speech parameters (i.e., Cllr,min). 
The presence of high levels of BN combined with low-quality coded 
speech causes the discrimination loss to increase. The situation was 
even worse for the higher speech quality. The calibration performance  
Cllr,cal for all the cases was found comparable, but it tends to be higher 
(i.e., worse) for higher-quality speech coding when SNR levels are low.

Conclusion
	 In this paper we have presented the impact of BN on the strength 
of evidence associated with a FVC analysis when using speech  
processed by either the GSM or CDMA mobile phone networks. 
These two major phone technologies are fundamentally different in 
their design and in their ways of handling BN, so their impact on 
the results of a FVC is also different. Three different kinds of BN at  
different SNR levels have been considered in our experiments, namely 
babble, street and car noises.

	 As expected, for both networks the accuracy of the FVC results was 
found to be worse when using noisy speech compared to clean-cod-
ed speech. Further, the higher the BN levels the worse the accuracy. 
This is because the speech parameters used for comparison begin to 
lose their potential for discriminating between speakers at high BN 
levels, as is evidenced in the higher discrimination losses observed  

under such conditions. The CDMA network tends to have a greater 
impact than the GSM network on FVC accuracy under noisy speech 
scenarios. The situation is even worse when the CDMA network uses 
high-quality speech coding, which would be the case if a call was made 
from a low populated area. This is due to the fact that the low-quality 
speech coding modes, such as OP1 and OP2, can mask the impact 
of BN by repeating information from previous frames, whereas this 
mechanism does not occur for high-quality coding (i.e., OP0).

	 The reliability of the FVC analysis was not significantly impacted 
by the addition of BN for either of the networks. In fact, this aspect 
improved for most of the investigated scenarios with BN.
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